Ulam-Hyers Stability of Additive and Reciprocal Functional Equations: Direct and Fixed Point Methods

M. Arunkumar ${ }^{1}$, A. Vijayakumar ${ }^{2}$, S. Karthikeyan ${ }^{3}$
${ }^{1}$ Department of Mathematics, Government Arts College, Tiruvannamalai, Tamilnadu, India
${ }^{2,3}$ Department of Mathematics, R.M.K. Engineering College, Kavarapettai, Tamilnadu, India

Abstract

In this paper, the authors established the generalized Ulam - Hyers stability of additive functional equation $$
f(x)=\sum_{l=1}^{n}\left(\frac{f\left(x+l y_{l}\right)+f\left(x-l y_{l}\right)}{2 n}\right)
$$ which is originating from arithmetic mean of n consecutive terms of an arithmetic progression in Intuitionistic fuzzy normed spaces and reciprocal functional equation $$
h\left(\frac{2 x}{n}\right)=\sum_{l=1}^{n}\left(\frac{h\left(x+l y_{t}\right) h\left(x-l y_{t}\right)}{h\left(x+l y_{l}\right)+h\left(x-l y_{t}\right)}\right)
$$ originating from n-consecutive terms of a harmonic progression in Non - Archimedean Fuzzy $\varphi-2$ - normed spaces using direct and fixed point methods. Applications of the above functional equations are also given.

Keywords: Additive functional equation, Reciprocal functional equation, generalized Ulam-Hyers stability, Intuitionistic fuzzy normed spaces, Non - Archimedean Fuzzy $\varphi-2$ - normed spaces, fixed point method.

2010 hematics Subject Classification: 39B52, 32B72, 32B82.

1. INTRODUCTION

In 1940, S.M. Ulam [47] introduced the stability of functional equations. Next year 1941, D. H. Hyers [16] gave first confirmatory answer to the Ulam question for Banach spaces. In 1978, Hyers theorem was generalized by Th.M. Rassias [37]. Gajda [12] answered the question for the case $p>1$ in the year 1991, which was raised by Rassias. This stability results is known as generalized Hyers-Ulam stability of functional equations (see [1, 2, 14, 20, 22, 26, 38]). During the years 1982-1994, Rassias [32-36] investigated the Ulam stability problem for different mappings involving a product of different powers of norms. Recently, Rassias gave the mixed product sum of powers of norms control function [39]. We also refer the readers to the books: P. Czerwik [7] and D.H. Hyers, G. Isac and Th.M. Rassias [17].

In 2003, V. Radu [31] introduced a new method, successively developed in [8-10], to obtaining the existence of the exact solutions and the error estimations, based on the fixed point alternative. The stability of several functional equations have been extensively investigated by a number of mathematicians and there are many interesting results concerning this problem (see [3, 4, 21, 23-25, 40, 41]).

In this paper, the authors proved the generalized Ulam - Hyers stability of an additive functional equation

$$
\begin{equation*}
f(x)=\sum_{l=1}^{n}\left(\frac{f\left(x+l y_{l}\right)+f\left(x-l y_{l}\right)}{2 n}\right) \tag{1.1}
\end{equation*}
$$

which is originating from arithmetic mean of n consecutive terms of an arithmetic progression in Intuitionistic fuzzy normed spaces, and reciprocal functional equation

$$
\begin{equation*}
h\left(\frac{2 x}{n}\right)=\sum_{l=1}^{n}\left(\frac{h\left(x+l y_{l}\right) h\left(x-l y_{l}\right)}{h\left(x+l y_{l}\right)+h\left(x-l y_{l}\right)}\right) \tag{1.2}
\end{equation*}
$$

Which is originating from n-consecutive terms of an harmonic progression in Non - Archimedean Fuzzy $\varphi-2-$ normed spaces using direct and fixed point methods. Applications of the above functional equations are also investigated.

2. PRELIMINARIES OF INTUITIONISTIC FUZZY NORMED AND NON-ARCHIMEDEAN FUZZY φ - $2-$ NORMED SPACES

In this section, we give some basic definitions and lemmas for the main results in this article.
Definition 2.1. Let μ and v be membership and nonmembership degree of an intuitionistic fuzzy set from $X \times(0,+\infty)$ to [0,1] such that $\mu_{x}(t)+v_{x}(t) \leq 1$ for all $x \in X$ and all $t>0$. The triple $\left(X, P_{\mu, \nu}, M\right)$ is said to be an intuitionistic fuzzy normed space (briefly IFN-space) if X is a vector space, M is a continuous t-representable and $P_{\mu, \nu}$ is a mapping $X \times(0,+\infty) \rightarrow L^{*}$ satisfying the following conditions: for all $x, y \in X$ and $t, s>0$,
(IFN1) $P_{\mu, v}(x, 0)=0_{L^{*}} ; \quad$ (IFN2) $P_{\mu, \nu}(x, t)=1_{L^{*}}$ if and only if $x=0$; (IFN3) $P_{\mu, \nu}(\alpha x, t)=P_{\mu, \nu}\left(x, \frac{t}{|\alpha|}\right)$ for all $\alpha \neq 0 ; \quad$ (IFN4) $P_{\mu, \nu}(x+y, t+s) \geq_{L^{*}} \mathrm{M}\left(P_{\mu, \nu}(x, t), P_{\mu, \nu}(y, s)\right)$.

In this case, $P_{\mu, \nu}$ is called an intuitionistic fuzzy norm. Here $P_{\mu, \nu}(x, t)=\left(\mu_{x}(t), \nu_{x}(t)\right)$.
Example 2.2. Let $(X,\|\cdot\|)$ be a normed space. Let $T(a, b)=\left(a, b \min \left(a_{2}+b_{2}, 1\right)\right)$ for all $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in L^{*}$ and μ, ν be membership and non-membership degree of an intuitionistic fuzzy set defined by

$$
P_{\mu, \nu}(x, t)=\left(\mu_{x}(t), v_{x}(t)\right)=\left(\frac{t}{t+\|x\|}, \frac{\|x\|}{t+\|x\|}\right), \forall t \in R^{+} .
$$

Then $\left(X, P_{\mu, v}, T\right)$ is an IFN-space.
Definition 2.3. A sequence $\left\{x_{n}\right\}$ in an IFN-space $\left(X, P_{\mu, \nu}, T\right)$ is called a Cauchy sequence if, for any $\varepsilon>0$ and $t>0$, there exists $n_{0} \in N$ such that $P_{\mu, v}\left(x_{n}-x_{m}, t\right)>_{L^{*}}\left(N_{s}(\varepsilon), \varepsilon\right), \quad \forall n, m \geq n_{0}$, where N_{s} is the standard negator.
Definition 2.4. The sequence $\left\{x_{n}\right\}$ is said to be convergent to a point $x \in X$

$$
\text { (denoted by } \left.x_{n} \xrightarrow{P_{\mu, v}} x\right) \text { if } P_{\mu, \nu}\left(x_{n}-x, t\right) \rightarrow 1_{L^{*}} \text { as } n \rightarrow \infty \text { for every } t>0 \text {. }
$$

Definition 2.5. An IFN-space $\left(X, P_{\mu, \nu}, T\right)$ is said to be complete if every Cauchy sequence in X is convergent to a point $x \in X$.
For further details about IFN space one can see ([5, 6, 1, 17-19, 30, 43, 44-46, 48-50]).
Based on [15], some basic definitions and notations in $\varphi-2-$ normed spaces is provided.
Definition 2.7 A t-norm \diamond is a two place function $\diamond:[0,1] \bullet \times[0,1] \rightarrow[0,1]$ which is associative, commutative, non decreasing in each place and such that $a \diamond 1=a$, for all $a \in[0,1]$.

Definition 2.8 Let φ be a function defined on the real field P into itself with the following properties :

- $\varphi(-t)=\varphi(t)$, for every $t \in \square$;
- $\varphi(1)=1$;
- φ is strict increasing and continuous on $(0, \infty)$;
- $\lim _{\alpha \rightarrow 0} \varphi(\alpha)=0$ and $\lim _{\alpha \rightarrow \infty} \varphi(\alpha)=\infty$.

Example 2.9 The functions

- $\varphi(\alpha)=|\alpha|$ for every $\alpha \in \square ;$
- $\varphi\left(\alpha^{p}\right)=|\alpha|^{p}$ for every $p \in \square_{+}$.

Definition 2.10 [7] Let L be a linear space over the field R of a dimension greater than one and let N be a mapping defined on $L \times L \times[0, \infty)$ with values into [0,1] satisfying the following conditions: for all $x, y, z \in L$ and $s, t \in[0, \infty)$
(NAF1) $N(x, y, 0)=0 ; \quad(\mathrm{NAF} 2) N(x, y, t)=1$, for all $t>0$ if and only if x, y are linear dependent;
(NAF3) $N(x, y, t)=N(y, x, t)$ for all $x, y \in L$, and $t>0 ; \quad($ NAF4) $N(x+y, z, \max (t, s)) \geq \min (N(x, z, t) \diamond N(y, z, s))$;
(NAF5) $N(x, y, \cdot):[0, \infty) \rightarrow[0,1]$ is left continuous. (NAF6) $N(\alpha x, y, t)=N\left(x, y, \frac{t}{\varphi(\alpha)}\right), \alpha \in R$.
The triple (L, N, \diamond) will be called a non-Archimedean fuzzy $\varphi-2$ - normed space.
Example 2.11 Let $(L,\|\cdot, \cdot\|)$ be a non-Archimedean fuzzy $\varphi-2$ - normed space. Then

$$
N(x, t)= \begin{cases}\frac{t}{t+\|x\|}, & t>0, x \in X \\ 0, & t \leq 0, x \in X\end{cases}
$$

Then (L, N, \diamond) is a non-Archimedean fuzzy $\varphi-2-$ normed space.
Definition 2.12 Let (L, N, \diamond) be a non-Archimedean fuzzy $\varphi-2$ - normed space. Let x_{n} be a sequence in L. Then $\left\{x_{n}\right\}$ is said to be convergent if there exists $x \in X$ such that

$$
\lim _{n \rightarrow \infty} N\left(x_{n}-x, a, t\right)=1
$$

for all $a \in L$ and $t>0$. In that case, x is called the limit of the sequence x_{n} and we denote it by

$$
N-\lim _{n \rightarrow \infty} x_{n}=x .
$$

Definition 2.13 A sequence x_{n} in L is called Cauchy if $N\left(x_{n+p}-x_{n}, a, t\right)=1$ for all $a \in L, p>0$ and $t>0$.
Definition 2.14 Every convergent sequence in a non-Archimedean fuzzy $\varphi-2$ - normed space is a Cauchy sequence. If every Cauchy sequence is convergent, then the non-Archimedean fuzzy $\varphi-2$ - normed space is called a nonArchimedean fuzzy $\varphi-2$ - Banach space.
For further details about non-Archimedean fuzzy $\varphi-2$ - normed space one can see ([11, 15, 16, 27, 29, 42])
Definition 2.15 Let X be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on X if d satisfies the following:
(1) $d(x, y)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(3) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

For explicit later use, we recall a fundamental result in fixed point theory.
Theorem 2.16 [28](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a strictly contractive mapping $T: X \rightarrow X$ with Lipschitz constant L. Then, for each given element $x \in X$, either (B1) $d\left(T^{n} x, T^{n+1} x\right)=\infty \quad \forall n \geq 0$,
(B2) there exists a natural number n_{0} such that:
(i) $d\left(T^{n} x, T^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
(ii) The sequence $\left(T^{n} x\right)$ is convergent to a fixed point y^{*} of T;
(iii) y^{*} is the unique fixed point of T in the set $Y=\left\{y \in X: d\left(T^{n_{0}} x, y\right)<\infty\right\}$;
(iv) $d\left(y^{*}, y\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in Y$.

Throughout this paper we define a mapping $D f: X \rightarrow Y$ by

$$
D f\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)=f(x)-\sum_{l=1}^{n}\left(\frac{f\left(x+l y_{l}\right)+f\left(x-l y_{l}\right)}{2 n}\right)
$$

for all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$ and a mapping $D H: X \rightarrow Y$ such that

$$
D H\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)=h\left(\frac{2 x}{n}\right)-\sum_{l=1}^{n}\left(\frac{h\left(x+l y_{l}\right) h\left(x-l y_{l}\right)}{h\left(x+l y_{l}\right)+h\left(x-l y_{l}\right)}\right)
$$

for all $x, y_{1}, y_{2}, \cdots, y_{n} \in X$.

3. INTUITIONISTIC FUZZY NORMED SPACE STABILITY: DIRECT METHOD

In this section, the authors present the generalized Ulam - Hyers stability of the functional equation (1.1) in IFN - space using direct method.

Throughout this section, let us consider $X,\left(Z, P_{\mu, \nu}, M\right)$ and $\left(Y, P_{\mu, \nu}^{\prime}, M\right)$ are linear space, Intuitionistic fuzzy normed space and Complete Intuitionistic fuzzy normed space respectively.
Theorem 3.1. Let $\delta \in\{-1,1\}$ be fixed and let $\xi: X^{n+1} \rightarrow Z$ be a mapping such that for some b with $0<\left(\frac{b}{2}\right)^{\gamma}<1$

$$
\begin{equation*}
P_{\mu, \nu}^{\prime}\left(\xi\left(2^{\delta} x, 2^{\delta} x, 0, \cdots, 0\right), r\right) \geq_{L^{*}} P_{\mu, \nu}^{\prime}\left(b^{\delta} \xi(x, x, 0, \cdots, 0), r\right), \tag{3.1}
\end{equation*}
$$

for all $x \in X$ and all $r>0, b>0$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P_{\mu, v}^{\prime}\left(\xi\left(2^{\delta k} x, 2^{\delta k} y_{1}, \cdots, 2^{\delta k} y_{n}\right), 2^{\delta k} r\right)=1_{L^{*}} \tag{3.2}
\end{equation*}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$ and all $r>0$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
P_{\mu, v}\left(D f\left(x, y_{1}, y_{2}, \ldots, y_{n}\right), r\right) \geq_{L^{*}} P_{\mu, \nu}^{\prime}\left(\xi\left(x, y_{1}, y_{2}, \ldots, y_{n}\right), r\right) \tag{3.3}
\end{equation*}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$ and all $r>0$. Then the limit

$$
\begin{equation*}
P_{\mu, v}\left(A(x)-\frac{f\left(2^{\delta k} x\right)}{2^{\delta k}}, r\right) \rightarrow 1_{L^{*}} \quad \text { as } \quad k \rightarrow \infty, r>0 \tag{3.4}
\end{equation*}
$$

exists for all $x \in X$ and the mapping $A: X \rightarrow Y$ is a unique additive mapping satisfying (1.1) and

$$
\begin{equation*}
P_{\mu, \nu}(f(x)-A(x), r) \geq_{L^{*}} P_{\mu, \nu}^{\prime}(\xi(x, x, 0, \cdots, 0), r n|2-b|) \tag{3.5}
\end{equation*}
$$

for all $x \in X$ and all $r>0$.
Proof. First assume $\delta=1$. Replacing $\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)$ by $(x, x, 0, \ldots, 0)$ in (3.3), we arrive

$$
P_{\mu, \nu}(2 n f(x)-n f(2 x), r) \geq_{L^{*}} P_{\mu, \nu}^{\prime}(\xi(x, x, 0, \cdots, 0), r)
$$

for all $x \in X$ and all $r>0$. Using (IFN3) in the above equation, we get

$$
\begin{equation*}
P_{\mu, v}\left(f(x)-\frac{f(2 x)}{2}, \frac{r}{2 n}\right) \geq_{L^{*}} P_{\mu, \nu}^{\prime}(\xi(x, x, 0, \cdots, 0), r) \tag{3.6}
\end{equation*}
$$

for all $x \in X$ and all $r>0$. Replacing x by $2^{k} x$ in (3.6), we obtain

$$
\begin{equation*}
P_{\mu, v}\left(f\left(2^{k} x\right)-\frac{f\left(2^{k+1} x\right)}{2}, \frac{r}{2 n}\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\xi\left(2^{k} x, 2^{k} x, 0, \cdots, 0\right), r\right) \tag{3.7}
\end{equation*}
$$

for all $x \in X$ and all $r>0$. Using (3.1), (IFN3) in (3.7), we arrive

$$
\begin{equation*}
P_{\mu, v}\left(f\left(2^{k} x\right)-\frac{f\left(2^{k+1} x\right)}{2}, \frac{r}{2 n}\right) \geq_{L^{*}} P_{\mu, \nu}^{\prime}\left(\xi(x, x, 0, \cdots, 0), \frac{r}{b^{k}}\right) \tag{3.8}
\end{equation*}
$$

for all $x \in X$ and all $r>0$. It is easy to verify from (3.8), that

$$
\begin{equation*}
P_{\mu, \nu}\left(\frac{f\left(2^{k} x\right)}{2^{k}}-\frac{f\left(2^{k+1} x\right)}{2^{(k+1)}}, \frac{r}{2^{k+1} \cdot n}\right) \geq_{L^{*}} P_{\mu, \nu}^{\prime}\left(\xi(x, x, 0, \cdots, 0), \frac{r}{b^{k}}\right) \tag{3.9}
\end{equation*}
$$

holds for all $x \in X$ and all $r>0$. Replacing r by $b^{n} r$ in (3.9), we get

$$
\begin{equation*}
P_{\mu, \nu}\left(\frac{f\left(2^{k} x\right)}{2^{k}}-\frac{f\left(2^{k+1} x\right)}{2^{(k+1)}}, \frac{b^{k} r}{2^{k+1} \cdot n}\right) \geq_{L^{*}} P_{\mu, \nu}^{\prime}(\xi(x, x, 0, \cdots, 0), r) \tag{3.10}
\end{equation*}
$$

for all $x \in X$ and all $r>0$. It is easy to see that

$$
\begin{equation*}
f(x)-\frac{f\left(2^{k} x\right)}{2^{k}}=\sum_{i=0}^{k-1} \frac{f\left(2^{i} x\right)}{2^{i}}-\frac{f\left(2^{i+1} x\right)}{2^{(i+1)}} \tag{3.11}
\end{equation*}
$$

for all $x \in X$. From equations (3.10) and (3.11), we have

$$
\begin{align*}
P_{\mu, \nu}\left(f(x)-\frac{f\left(2^{k} x\right)}{2^{k}}, \sum_{i=0}^{k-1} \frac{b^{i} r}{2^{i} \cdot 2 n}\right) & \geq_{L^{*}} M_{i=0}^{k-1}\left\{P_{\mu, v}\left(\frac{f\left(2^{i} x\right)}{2^{i}}-\frac{f\left(2^{i+1} x\right)}{2^{(i+1)}}, \frac{b^{i} r}{2^{i} \cdot 2 n}\right)\right\} \tag{3.12}\\
& \geq_{L^{*}} M_{i=0}^{k-1}\left\{P_{\mu, \nu}^{\prime}(\xi(x, x, 0, \cdots, 0), r)\right\} \geq_{L^{*}} P_{\mu, v}^{\prime}(\xi(x, x, 0, \cdots, 0), r)
\end{align*}
$$

for all $x \in X$ and all $r>0$. Replacing x by $2^{m} x$ in (3.12) and using (3.1), (IFN3), we obtain

$$
\begin{equation*}
P_{\mu, v}\left(\frac{f\left(2^{m} x\right)}{2^{m}}-\frac{f\left(2^{k+m} x\right)}{2^{(k+m)}}, \sum_{i=0}^{k-1} \frac{b^{i} r}{2^{(i+m)} \cdot 2 n}\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\xi(x, x, 0, \cdots, 0), \frac{r}{b^{m}}\right) \tag{3.13}
\end{equation*}
$$

for all $x \in X$ and all $r>0$ and all $m, k \geq 0$. Replacing r by $b^{m} r$ in (3.13), we get

$$
\begin{equation*}
P_{\mu, \nu}\left(\frac{f\left(2^{m} x\right)}{2^{m}}-\frac{f\left(2^{k+m} x\right)}{2^{(k+m)}}, \sum_{i=m}^{m+k-1} \frac{b^{i} r}{2^{i} \cdot 2 n}\right) \geq_{L^{*}} P_{\mu, \nu}^{\prime}(\xi(x, x, 0, \cdots, 0), r) \tag{3.14}
\end{equation*}
$$

for all $x \in X$ and all $r>0$ and all $m, k \geq 0$. It follows from (3.14) that

$$
\begin{equation*}
P_{\mu, v}\left(\frac{f\left(2^{m} x\right)}{2^{m}}-\frac{f\left(2^{k+m} x\right)}{2^{(k+m)}}, r\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\xi(x, x, 0, \cdots, 0), \frac{r}{\sum_{i=m}^{m+k-1} \frac{b^{i}}{2^{i} \cdot 2 n}}\right) \tag{3.15}
\end{equation*}
$$

for all $x \in X$ and all $r>0$ and all $m, k \geq 0$. Since $0<b<2$ and $\sum_{i=0}^{k}\left(\frac{b}{2}\right)^{i}<\infty$, this implies $\left\{\frac{f\left(2^{k} x\right)}{2^{k}}\right\}$ is a Cauchy sequence in $\left(Y, P_{\mu, \nu}^{\prime}, M\right)$. Since $\left(Y, P_{\mu, \nu}^{\prime}, M\right)$ is a complete IFN space, this sequence converges to some point $A(x) \in Y$. So one can define the mapping $A: X \rightarrow Y$ by

$$
\begin{equation*}
P_{\mu, v}\left(A(x)-\frac{f\left(2^{k} x\right)}{2^{k}}, r\right) \rightarrow 1_{L^{*}} \text { as } k \rightarrow \infty, r>0 \tag{3.16}
\end{equation*}
$$

for all $x \in X$. Letting $m=0$ in (3.15), we get

$$
\begin{equation*}
P_{\mu, \nu}\left(f(x)-\frac{f\left(2^{k} x\right)}{2^{k}}, r\right) \geq_{L^{*}} P_{\mu, \nu}^{\prime}\left(\xi(x, x, 0, \cdots, 0), \frac{r}{\sum_{i=0}^{k-1} \frac{b^{i}}{2^{i} \cdot 2 n}}\right) \tag{3.17}
\end{equation*}
$$

for all $x \in X$ and all $r>0$. Letting $k \rightarrow \infty$ in (3.17), we arrive

$$
P_{\mu, v}(f(x)-A(x), r) \geq_{L^{*}} P_{\mu, v}^{\prime}(\xi(x, x, 0, \cdots, 0), r n(2-b))
$$

for all $x \in X$ and all $r>0$. To prove A satisfies the additive functional equation (1.1), replacing $\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)$ by $\left(2^{k} x, 2^{k} y_{1}, 2^{k} y_{2}, \ldots, 2^{k} y_{n}\right)$ and dividing by 2^{k} in (3.2), we obtain

$$
\begin{equation*}
P_{\mu, \nu}\left(\frac{1}{2^{k}} D f\left(2^{k} x, 2^{k} y_{1}, \cdots, 2^{k} y_{n}\right), r\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\xi\left(2^{k} x, 2^{k} y_{1}, \cdots, 2^{k} y_{n}\right), 2^{k} r\right) \tag{3.18}
\end{equation*}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$ and all $r>0$. Now,

$$
\begin{align*}
& P_{\mu, \nu}\left(A(x)-\sum_{l=1}^{n}\left(\frac{A\left(x+l y_{l}\right)+A\left(x-l y_{l}\right)}{2 n}\right), r\right) \\
& \geq_{L^{*}} M\left\{P_{\mu, \nu}\left(A(x)-\frac{f\left(2^{k} x\right)}{2^{k}}, \frac{r}{3}\right), P_{\mu, \nu}\left(-\sum_{l=1}^{n}\left(\frac{A\left(x+l y_{l}\right)+A\left(x-l y_{l}\right)}{2 n}\right)+\frac{1}{2^{k}} \sum_{l=1}^{n}\left(\frac{f\left(2^{k}\left(x+l y_{l}\right)\right)+f\left(2^{k}\left(x-l y_{l}\right)\right)}{2 n}\right), \frac{r}{3}\right),\right. \tag{3.19}\\
& \left.P_{\mu, \nu}\left(\frac{f\left(2^{k} x\right)}{2^{k}}-\frac{1}{2^{k}} \sum_{l=1}^{n}\left(\frac{f\left(2^{k}\left(x+l y_{l}\right)\right)+f\left(2^{k}\left(x-l y_{l}\right)\right)}{2 n}\right), \frac{r}{3}\right)\right\}
\end{align*}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$ and all $r>0$. Using (3.16), (3.18), (3.2) and (IFN2) in (3.19), we arrive

$$
A(x)=\sum_{l=1}^{n}\left(\frac{A\left(x+l y_{l}\right)+A\left(x-l y_{l}\right)}{2 n}\right)
$$

for all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$. Hence A satisfies the additive functional equation (1.1). In order to prove $A(x)$ is unique, let $A^{\prime}(x)$ be another additive functional mapping satisfying (3.4) and (3.5). Hence,

$$
\begin{aligned}
P_{\mu, v}\left(A(x)-A^{\prime}(x), r\right) & \geq_{L^{*}} M\left\{P_{\mu, \nu}\left(\frac{A\left(2^{k} x\right)}{2^{k}}-\frac{f\left(2^{k} x\right)}{2^{k}}, \frac{r}{2}\right), P_{\mu, v}\left(\frac{A^{\prime}\left(2^{k} x\right)}{2^{k}}-\frac{A\left(2^{k} x\right)}{2^{3 k}}, \frac{r}{2}\right)\right\} \\
& \geq_{L^{*}} P_{\mu, \nu}^{\prime}\left(\xi\left(2^{k} x, 2^{k} x, 0, \cdots, 0\right), \frac{r 2^{k} n(2-b)}{2}\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\xi(x, x, 0, \cdots, 0), \frac{r 2^{k} n(2-b)}{2 b^{k}}\right)
\end{aligned}
$$

for all $x \in X$ and all $r>0$. Since $\lim _{k \rightarrow \infty} \frac{r 2^{k} n(2-b)}{2 b^{k}}=\infty$, we obtain $\lim _{k \rightarrow \infty} P_{\mu, v}^{\prime}\left(\xi(x, x, 0, \cdots, 0), \frac{r 2^{k} n(2-b)}{2 b^{k}}\right)=1_{L^{n}}$. Thus $P_{\mu, \nu}\left(A(x)-A^{\prime}(x), r\right)=1_{L^{*}}$ for all $x \in X$ and all $r>0$, hence $A(x)=A^{\prime}(x)$. Therefore $A(x)$ is unique.
For $\delta=-1$, we can prove the result by a similar method. This completes the proof of the theorem.
From Theorem 3.1, we obtain the following corollary concerning the stability for the functional equation (1.1).
Corollary 3.2 Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
P_{\mu, \nu}\left(D f\left(x, y_{1}, \cdots y_{n}\right), r\right) \geq_{L^{*}} \begin{cases}P_{\mu, \nu}^{\prime}(\lambda, r), \tag{3.20}\\ P_{\mu, \nu}^{\prime}\left(\lambda\left\{\|x\|^{s}+\sum_{l=1}^{n}\left\|y_{l}\right\|^{s}\right\}, r\right), \\ P_{\mu, \nu}^{\prime}\left(\lambda\left\{\|x\|^{s} \prod_{l=1}^{n}\left\|y_{l}\right\|^{s}+\left\{\|x\|^{(n+1) s}+\sum_{l=1}^{n}\left\|y_{l}\right\|^{(n+1) s}\right\}\right\}, r\right), & s \neq \frac{1}{n+1}\end{cases}
$$

for all all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$ and all $r>0$, where λ, s are constants with $\lambda>0$. Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
P_{\mu, v}(f(x)-A(x), r) \geq_{L^{*}}\left\{\begin{array}{l}
P_{\mu, v}^{\prime}(\lambda, n r), \tag{3.21}\\
P_{\mu, v}^{\prime}\left(2 \lambda\|x\|^{s}, r n\left|2-2^{s}\right|\right), \\
P_{\mu, v}^{\prime}\left(2 \lambda\|x\|^{(n+1) s}, r n\left|2-2^{(n+1) s}\right|\right)
\end{array}\right.
$$

for all $x \in X$ and all $r>0$.

4. INTUITIONISTIC FUZZY NORMED STABILITY: FIXED POINT METHOD

In this section, using the fixed point alternative approach, we prove the generalized Ulam - Hyers stability of the functional equation (1.1) in intuitionistic fuzzy normed spaces. Throughout this section, let us consider $X,\left(Z, P_{\mu, \nu}, M\right)$ and $\left(Y, P_{\mu, \nu}^{\prime}, M\right)$ are linear space, Intuitionistic fuzzy normed space and Complete Intuitionistic fuzzy normed space.

For to prove the stability result we define the following: a_{i} is a constant such that

$$
a_{i}=\left\{\begin{array}{lll}
2 & \text { if } & i=0, \\
\frac{1}{2} & \text { if } & i=1
\end{array}\right.
$$

and Ω is the set such that

$$
\Omega=\{g \mid g: X \rightarrow Y, g(0)=0\} .
$$

Theorem 4.1. Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\xi: X^{n+1} \rightarrow Z$ with the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} P_{\mu, \nu}^{\prime}\left(\xi\left(a_{i}^{k} x, a_{i}^{k} y_{1}, \cdots, a_{i}^{k} y_{n}\right), a_{i}^{k} r\right)=1_{L^{*}}, \forall x, y_{1}, \cdots, y_{n} \in X, r>0 \tag{4.1}
\end{equation*}
$$

and satisfying the functional inequality

$$
\begin{equation*}
P_{\mu, \nu}\left(D f\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), r\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\xi\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), r\right), \forall x, y_{1}, y_{2}, \cdots, y_{n} \in X, r>0 . \tag{4.2}
\end{equation*}
$$

If there exists $L=L(i)$ such that the function $x \rightarrow \gamma(x)=\xi\left(\frac{x}{2}, \frac{x}{2}, 0, \cdots, 0\right)$, has the property

$$
\begin{equation*}
P_{\mu, \nu}^{\prime}\left(L \frac{\gamma\left(a_{i} x\right)}{a_{i}}, r\right)=P_{\mu, v}^{\prime}(\gamma(x), r), \quad \forall x \in X, r>0 \tag{4.3}
\end{equation*}
$$

Then there exists unique additive function $A: X \rightarrow Y$ satisfying the functional equation (1.1) and

$$
\begin{equation*}
P_{\mu, v}(f(x)-A(x), r) \geq_{L^{H}} P_{\mu, v}^{\prime}\left(\left(\frac{L^{1-i}}{1-L}\right) \gamma(x), n r\right), \forall x \in X, r>0 . \tag{4.4}
\end{equation*}
$$

Proof. Let d be a general metric on Ω, such that

$$
d(g, h)=\inf \left\{K \in(0, \infty) \mid P_{\mu, \nu}(g(x)-h(x), r) \geq_{L^{*}} P_{\mu, \nu}^{\prime}(K \gamma(x), r), x \in X, r>0\right\} .
$$

It is easy to see that (Ω, d) is complete. Define $T: \Omega \rightarrow \Omega$ by $T g(x)=\frac{1}{a_{i}} g\left(a_{i} x\right)$, for all $x \in X$. Now for all $g, h \in \Omega$,

$$
\begin{aligned}
d(g, h) \leq K & \Rightarrow P_{\mu, \nu}(g(x)-h(x), r) \geq_{L^{*}} P_{\mu, v}^{\prime}(K \gamma(x), r), x \in X, \\
& \Rightarrow P_{\mu, v}\left(\frac{1}{a_{i}} g\left(a_{i} x\right)-\frac{1}{a_{i}} h\left(a_{i} x\right), r\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(K \gamma\left(a_{i} x\right), a_{i} r\right), x \in X, \\
& \Rightarrow P_{\mu, v}\left(\frac{1}{a_{i}} g\left(a_{i} x\right)-\frac{1}{a_{i}} h\left(a_{i} x\right), r\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\frac{K}{a_{i}} \gamma\left(a_{i} x\right), r\right), x \in X, \\
& \Rightarrow P_{\mu, \nu}(T g(x)-T h(x), r) \geq_{L^{*}} P_{\mu, \nu}^{\prime}(K L \gamma(x), r), x \in X, \\
& \Rightarrow d(T g, T h) \leq L K .
\end{aligned}
$$

This gives $d(T g, T h) \leq L d(g, h)$, for all $g, h \in \Omega$, i.e., T is a strictly contractive mapping of Ω with Lipschitz constant $L=\frac{1}{a_{i}}$. Replacing $\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)$ by $(x, x, 0, \cdots, 0)$ in (4.2), we get

$$
\begin{equation*}
P_{\mu, \nu}(2 n f(x)-n f(2 x), r) \geq_{L^{*}} P_{\mu, v}^{\prime}(\xi(x, x, 0, \cdots, 0), r), \quad \forall x \in X, r>0 . \tag{4.5}
\end{equation*}
$$

Using (IFN3) in (4.5), we arrive

$$
\begin{equation*}
P_{\mu, v}\left(f(x)-\frac{f(2 x)}{2}, r\right) \geq_{L^{\star}} P_{\mu, v}^{\prime}(\xi(x, x, 0, \cdots, 0), 2 n r), \forall x \in X, r>0 . \tag{4.6}
\end{equation*}
$$

With the help of (4.3), when $i=0$, it follows from (4.6), that

$$
\begin{align*}
& \quad P_{\mu, \nu}\left(f(x)-\frac{f(2 x)}{2}, r\right) \geq_{L^{*}} P_{\mu, \nu}^{\prime}(\gamma(x), 2 n r), \quad \forall x \in X, r>0 . \\
& \Rightarrow d(f, T f) \leq L=L^{1}=L^{1-i}<\infty . \tag{4.7}
\end{align*}
$$

Replacing x by $\frac{x}{2}$ in (4.5), we obtain

$$
\begin{equation*}
P_{\mu, v}\left(2 f\left(\frac{x}{2}\right)-f(x), r\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\xi\left(\frac{x}{2}, \frac{x}{2}, 0, \cdots, 0\right), n r\right), \forall x \in X, r>0 . \tag{4.8}
\end{equation*}
$$

With the help of (4.3), when $i=1$, it follows from (4.8), that

$$
\begin{align*}
& P_{\mu, v}\left(2 f\left(\frac{x}{2}\right)-f(x), r\right) \geq_{L^{*}} P_{\mu, v}^{\prime}(\gamma(x), n r), \quad \forall x \in X, r>0, \\
& \quad \Rightarrow d(T f, f) \leq 1=L^{0}=L^{1-i} . \tag{4.9}
\end{align*}
$$

Then from (4.7) and (4.9), we can conclude

$$
d(f, T f) \leq L^{1-i}<\infty .
$$

Now from the fixed point alternative in both cases, it follows that there exists a fixed point A of T in Ω such that

$$
\begin{equation*}
A(x) \xrightarrow{P_{\mu, \nu}} \frac{f\left(a_{i}^{k} x\right)}{a_{i}^{k}}, k \rightarrow \infty, \quad \forall x \in X . \tag{4.10}
\end{equation*}
$$

Replacing (x, y_{1}, \cdots, y_{n}) by $\left(a_{i}^{k} x, a_{i}^{k} y_{1}, \cdots, a_{i}^{k} y_{n}\right)$ in (4.2), we arrive

$$
\begin{equation*}
P_{\mu, \nu}\left(\frac{1}{a_{i}^{k}} \operatorname{Df}\left(a_{i}^{k} x, a_{i}^{k} y_{1}, \cdots, a_{i}^{k} y_{n}\right), r\right) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\xi\left(a_{i}^{k} x, a_{i}^{k} y_{1}, \cdots, a_{i}^{k} y_{n}\right), a_{i}^{k} r\right), \quad \forall x_{1}, \cdots, x_{n} \in X, r>0 . \tag{4.11}
\end{equation*}
$$

In order to prove A satisfies (1.1), the proof is similar to that of Theorem 3.1. Using fixed point alternative, A is the uniquie fixed point in T the set

$$
\mathrm{B}=\{h \in \Omega \mid d(f, A)<\infty\},
$$

such that

$$
\begin{equation*}
P_{\mu, \nu}(f(x)-A(x), r) \geq_{L^{*}} P_{\mu, \nu}^{\prime}(K \gamma(x), r), \quad \forall x \in X, r>0 . \tag{4.13}
\end{equation*}
$$

Again using the fixed point alternative, we obtain

$$
d(f, A) \leq \frac{1}{1-L} d(f, T f) \Rightarrow d(f, A) \leq \frac{L^{1-i}}{1-L}
$$

Hence, we have

$$
\begin{equation*}
P_{\mu, v}(f(x)-A(x), r) \geq_{L^{*}} P_{\mu, v}^{\prime}\left(\left(\frac{L^{1-i}}{1-L}\right) \gamma(x), n r\right), \forall x \in X, r>0 . \tag{4.14}
\end{equation*}
$$

This completes the proof of the theorem.
From Theorem 4.1, we obtain the following corollary concerning the stability for the functional equation (1.1).
Corollary 4.2 Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
P_{\mu, \nu}\left(D f\left(x, y_{1}, \cdots y_{n}\right), r\right) \geq_{L^{*}}\left\{\begin{array}{l}
P_{\mu, \nu}^{\prime}(\lambda, r), \tag{4.15}\\
P_{\mu, \nu}^{\prime}\left(\lambda\left\{\|x\|^{s}+\sum_{l=1}^{n}\left\|y_{l}\right\|^{s}\right\}, r\right), \\
P_{\mu, v}^{\prime}\left(\lambda\left\{\|x\|^{s} \prod_{l=1}^{n}\left\|y_{l}\right\|^{s}+\left\{\|x\|^{(n+1) s}+\sum_{l=1}^{n}\left\|y_{l}\right\|^{(n+1) s}\right\}\right\}, r\right),
\end{array} s \neq \frac{1}{n+1}\right.
$$

for all all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$ and all $r>0$, where λ, s are constants with $\lambda>0$. Then there exists a unique quadratic mapping $A: X \rightarrow Y$ such that

$$
P_{\mu, \nu}(f(x)-A(x), r) \geq_{L^{*}}\left\{\begin{array}{l}
P_{\mu, \nu}^{\prime}(\lambda,|n| r) \tag{4.16}\\
P_{\mu, \nu}^{\prime}\left(\frac{2 \lambda}{n\left|2-2^{s}\right|}\|x\|^{s}, r\right) \\
P_{\mu, v}^{\prime}\left(\frac{2 \lambda}{n\left|2-2^{(n+1) s}\right|}\|x\|^{(n+1) s}, r\right.
\end{array}\right)
$$

for all $x \in X$ and all $r>0$.
Proof.

Setting

$$
\xi\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)=\left\{\begin{array}{l}
\lambda \\
\lambda\left(\|x\|^{s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{s}\right) \\
\lambda\left(\|x\|^{s} \prod_{i=1}^{n}\left\|y_{i}\right\|^{s}+\left\|x_{i}\right\|^{(n+1) s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{(n+1) s}\right)
\end{array}\right.
$$

for all $x, y_{1}, y_{2}, \ldots, y_{n} \in X$. Then

$$
\begin{aligned}
& P_{\mu, v}^{\prime}\left(\frac{1}{a_{i}^{k}} \xi\left(a_{i}^{k} x, a_{i}^{k} y_{1}, a_{i}^{k} y_{2}, \cdots, a_{i}^{k} y_{n}\right), r\right)=\left\{\begin{array}{l}
P_{\mu, v}^{\prime}\left(\frac{\rho}{a_{i}^{k}}, r\right) \\
P_{\mu, v}^{\prime}\left(\frac{\rho}{a_{i}^{k}}\left(\left\|a_{i}^{k} x\right\|^{s}+\sum_{i=1}^{n}\left\|a_{i}^{k} y_{i}\right\|^{s}\right), r\right)
\end{array}\right. \\
& P_{\mu, v}^{\prime}\left(\frac{\rho}{a_{i}^{k}}\left(\left\|a_{i}^{k} x\right\|^{s} \prod_{i=1}^{n}\left\|a_{i}^{k} y_{i}\right\|^{s}+\left\|a_{i}^{k} x\right\|^{(n+1) s}+\sum_{i=1}^{n}\left\|a_{i}^{k} y_{i}\right\|^{(n+1) s}\right), r\right) \\
& =\left\{\begin{array}{l}
P_{\mu, \nu}^{\prime}\left(a_{i}^{-k} \lambda, r\right) \\
P_{\mu, \nu}^{\prime}\left(a_{i}^{(s-1) k} \lambda\left(\|x\|^{s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{s}\right), r\right) \\
P_{\mu, \nu}^{\prime}\left(a_{i}^{((n+1) s-1) k}\left(\|x\|^{s} \prod_{i=1}^{n}\left\|y_{i}\right\|^{s}+\|x\|^{(n+1) s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{(n+1) s}\right), r\right.
\end{array}=\left\{\begin{array}{l}
\rightarrow 1_{L^{*}} \text { as } k \rightarrow \infty, \\
\rightarrow 1_{L^{*}} \text { as } k \rightarrow \infty, \\
\rightarrow 1_{L^{*}} \text { as } k \rightarrow \infty .
\end{array}\right.\right.
\end{aligned}
$$

i.e., (3.1) is holds. But we have $\gamma(x)=\xi\left(\frac{x}{2}, \frac{x}{2}, 0, \ldots, 0\right)$ has the property $\gamma(x) \leq L \cdot \frac{1}{a_{i}} \gamma\left(a_{i} x\right)$ for all $x \in X$. Hence

$$
P_{\mu, \nu}^{\prime}(\gamma(x), r)=P_{\mu, \nu}^{\prime}\left(\xi\left(\frac{x}{2}, \frac{x}{2}, 0, \cdots 0\right), r\right)=\left\{\begin{array}{l}
P_{\mu, \nu}^{\prime}(\lambda, n r) \\
P_{\mu, \nu}^{\prime}\left(\lambda 2^{1-s}\|x\|^{s}, n r\right) \\
P_{\mu, v}^{\prime}\left(\lambda 2^{1-(n+1) s}\|x\|^{(n+1) s}, n r\right)
\end{array}\right.
$$

Now,

$$
P_{\mu, v}^{\prime}\left(\frac{1}{a_{i}} \gamma\left(a_{i} x\right), r\right)=\left\{\begin{array}{l}
P_{\mu, v}^{\prime}\left(a_{i}^{-1} \lambda, n r\right) \\
P_{\mu, v}^{\prime}\left(\lambda a_{i}^{1-s} 2^{1-s}\|x\|^{s}, n r\right) \\
P_{\mu, v}^{\prime}\left(\lambda a_{i}^{1-(n+1) s} 2^{1-(n+1) s}\|x\|^{(n+1) s}, n r\right)
\end{array}\right.
$$

for all $x \in X$. Hence the inequality (3.3) holds either, $L=2^{1-s}$ for $s>1$ if $i=0$ and $L=2^{s-1}$ for $s<1$ if $i=1$. From (5.4),

Case: $1 L=2^{1-s}$ for $s>1$ if $i=0$,.

$$
P_{\mu, v}(f(x)-A(x), r) \geq_{L^{*}} P_{\mu, \nu}^{\prime}\left(\left(\frac{2^{1-s}}{1-2^{1-s}}\right) \gamma(x), n r\right)=P_{\mu, \nu}^{\prime}\left(\frac{2 \lambda}{n\left|2^{s}-2\right|}\|x\|^{s}, r\right)
$$

Case:2 $L=2^{s-1}$ for $s<1$ if $i=1$,

$$
P_{\mu, \nu}(f(x)-A(x), r) \geq_{L^{*}} P_{\mu, \nu}^{\prime}\left(\left(\frac{1}{1-2^{s-1}}\right) \gamma(x), n r\right)=P_{\mu, \nu}^{\prime}\left(\frac{2 \lambda}{n\left|2-2^{s}\right|}\|x\|^{s}, r\right)
$$

Similarly, the inequality (4.3) holds either, $L=2^{-1}$ if $i=0$ and $L=2$ if $i=1$ for condition (i) and the inequality (4.3) holds either, $L=2^{1-(n+1) s}$ for $s>\frac{1}{n+1}$ if $i=0$ and $L=2^{(n+1) s-1}$ for $s<\frac{1}{n+1}$ if $i=1$ for condition (iii). Hence the proof is complete.

5. NON-ARCHIMEDEAN FUZZY $\varphi-2$ - NORMED STABILITY: DIRECT METHOD

In this section, the generalized Ulam - Hyers stability of the additive functional equation (1.2) in non-Archimedean fuzzy $\varphi-2$ - normed space is provided. Here after, throughout this section, assume that R be a non-Archimedean field, X be vector space over $R,\left(Y, N^{\prime}, \diamond\right)$ be a non-Archimedean fuzzy $\varphi-2-$ Banach space over R and $\left(Z, N^{\prime}, \diamond\right)$ be an nonArchimedean fuzzy $\varphi-2-$ normed space.
Theorem 5.1 Let $\gamma \in\{-1,1\}$ be fixed and let $\alpha: X^{n+1} \rightarrow Z$ be a mapping such that for some τ with $0<\left(\frac{\varphi(\tau)}{\varphi(2 / n)}\right)^{\gamma}<1$

$$
\begin{equation*}
N^{\prime}\left(\alpha\left((2 / n)^{\gamma} x, 0,0, \ldots, 0\right), a, r\right) \geq N^{\prime}\left(\tau^{\gamma} \alpha(x, 0,0, \ldots, 0), a, r\right) \tag{5.1}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$, and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left((n / 2)^{\gamma k} x,(n / 2)^{\gamma k} y_{1},(n / 2)^{\gamma k} y_{2}, \ldots,(n / 2)^{\gamma k} y_{n}, a, \frac{r}{\left[\varphi\left((n / 2)^{k}\right)\right]^{\gamma}}\right)\right)=1 \tag{5.2}
\end{equation*}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
N\left(D F\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), a, r\right) \geq N^{\prime}\left(\alpha\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), a, r\right) \tag{5.3}
\end{equation*}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$. Then the limit

$$
\begin{equation*}
R(x)=N-\lim _{k \rightarrow \infty}(n / 2)^{\gamma k} f\left((n / 2)^{\gamma k} x\right) \tag{5.4}
\end{equation*}
$$

exists for all $x \in X$ and the mapping $R: X \rightarrow Y$ is a unique reciprocal mapping satisfying (1.2) and

$$
\begin{equation*}
N(f(x)-R(x), a, r) \geq N^{\prime}(\alpha((n / 2) x, 0, \ldots, 0), a, r|\varphi(2 / n)-\varphi(\kappa)|) \tag{5.5}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$.
Proof. First assume $\gamma=1 .\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)$ by $(x, 0,0, \cdots, 0)$ in (5.3), we get

$$
\begin{equation*}
N(f((2 / n) x)-(n / 2) f(x), a, r) \geq N^{\prime}(\alpha(x, 0,0, \ldots, 0), a, r) \tag{5.6}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$. Replacing x by $(n / 2) x$ in (5.6), we get

$$
\begin{equation*}
N(f(x)-(n / 2) f((n / 2) x), a, r) \geq N^{\prime}(\alpha((n / 2) x, 0,0, \ldots, 0), a, r) \tag{5.7}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$. Replacing x by $(n / 2)^{k} x$ in (5.7), we obtain

$$
\begin{equation*}
N\left(f\left((n / 2)^{k} x\right)-(n / 2) f\left((n / 2)^{k+1} x\right), a, r\right) \geq N^{\prime}\left(\alpha\left((n / 2)^{k+1} x, 0,0, \ldots, 0\right), a, r\right) \tag{5.8}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$. Using (5.1), (NAF6) in (5.8), we arrive

$$
\begin{equation*}
N\left((n / 2)^{k} f\left((n / 2)^{k} x\right)-(n / 2)^{k+1} f\left((n / 2)^{k+1} x\right), a, \frac{r}{\varphi\left((2 / n)^{k}\right)}\right) \geq N^{\prime}\left(\alpha(x, 0,0, \ldots, 0), a, \frac{r}{\varphi\left(\tau^{k+1}\right)}\right) \tag{5.9}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$. Replacing r by $\varphi\left(\tau^{k+1}\right) r$ in (5.9), we get

$$
\begin{equation*}
N\left((n / 2)^{k} f\left((n / 2)^{k} x\right)-(n / 2)^{k+1} f\left((n / 2)^{k+1} x\right), a, \frac{\varphi\left(\tau^{k+1}\right) r}{\varphi\left((2 / n)^{k}\right)}\right) \geq N^{\prime}(\alpha(x, 0,0, \ldots, 0), a, r) \tag{5.10}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$. It is easy to verify that

$$
\begin{equation*}
f(x)-(n / 2)^{i} f\left((n / 2)^{i} x\right)=\sum_{i=0}^{k-1}\left((n / 2)^{i} f\left((n / 2)^{i} x\right)-(n / 2)^{i+1} f\left((n / 2)^{i+1} x\right)\right) \tag{5.11}
\end{equation*}
$$

for all $x \in X$. From equations (5.10) and (5.11), we have

$$
\begin{align*}
& N\left(f(x)-(n / 2)^{k} f\left((n / 2)^{k} x\right), a, \sum_{i=0}^{k-1}[\varphi(\tau)]^{i+1} r\right. \\
& {[\varphi(2 / n)]^{i} } \geq \min \bigcup_{i=0}^{k-1}\left\{N\left((n / 2)^{i} f\left((n / 2)^{i} x\right)-(n / 2)^{i+1} f\left((n / 2)^{i+1} x\right), a, \frac{[\varphi(\tau)]^{i+1} r}{[\varphi(2 / n)]^{i}}\right)\right\} \tag{5.12}\\
& \geq \min _{i=0}^{n-1}\left\{N^{\prime}(\alpha(x, 0,0, \ldots, 0), a, r)\right\} \geq N^{\prime}(\alpha(x, 0,0, \ldots, 0), a, r)
\end{align*}
$$

for all $x, a \in X$ and all $r>0$. Replacing x by $(n / 2)^{m} x$ in (5.12) and using (5.1), (NAF6), we obtain

$$
\begin{equation*}
N\left((n / 2)^{m} f\left((n / 2)^{m} x\right)-(n / 2)^{k+m} f\left((n / 2)^{k+m} x\right), a, \sum_{i=0}^{k-1} \frac{[\varphi(\tau)]^{i+1} r}{[\varphi(2 / n)]^{i+m}}\right) \geq N^{\prime}\left(\alpha(x, 0,0, \ldots, 0), a, \frac{r}{[\varphi(\tau)]^{m}}\right) \tag{5.13}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$ and all $m, k \geq 0$. Replacing r by $\varphi\left(\tau^{m}\right) r$ in (5.13), we get

$$
\begin{equation*}
N\left((n / 2)^{m} f\left((n / 2)^{m} x\right)-(n / 2)^{k+m} f\left((n / 2)^{k+m} x\right), a, \sum_{i=m}^{m+k+1} \frac{[\varphi(\tau)]^{i+1} r}{[\varphi(2 / n)]^{i}}\right) \geq N^{\prime}(\alpha(x, 0,0, \ldots, 0), a, r) \tag{5.14}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$ and all $m, k \geq 0$. It follows from (5.14) that

$$
\begin{equation*}
N\left((n / 2)^{m} f\left((n / 2)^{m} x\right)-(n / 2)^{k+m} f\left((n / 2)^{k+m} x\right), a, r\right) \geq N^{\prime}\left(\alpha(x, 0,0, \ldots, 0), a, \sum_{i=m}^{m+k+1} \frac{[\varphi(\tau)]^{i+1} r}{[\varphi(2 / n)]^{i}}\right) \tag{5.15}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$ and all $m, k \geq 0$. Since $0<\tau<(2 / n)$ and $\sum_{i=0}^{n}\left(\frac{\varphi(\tau)}{\varphi(2 / n)}\right)^{\gamma}<\infty$, implies that $\left\{\frac{f\left((n / 2)^{k} x\right)}{(2 / n)^{k}}\right\}$ is a
Cauchy sequence in $\left(Y, N^{\prime}\right)$. Since $\left(Y, N^{\prime}\right)$ is a non-Archimedean fuzzy $\varphi-2$ - Banach space, this sequence converges to some point $R(x) \in Y$. So one can define the mapping $R: X \rightarrow Y$ by

$$
R(x)=N-\lim _{k \rightarrow \infty} \frac{f\left((n / 2)^{k} x\right)}{(2 / n)^{k}}
$$

for all $x \in X$. Letting $m=0$ in (5.15), we get

$$
\begin{equation*}
N\left(f(x)-(n / 2)^{k} f\left((n / 2)^{k} x\right), a, r\right) \geq N^{\prime}\left(\alpha(x, 0,0, \ldots, 0), a, \sum_{i=0}^{k+1} \frac{[\varphi(\tau)]^{i+1} r}{\left[\varphi(2 / n]^{i}\right]}\right) \tag{5.16}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$. Letting $k \rightarrow \infty$ in (5.16) and using (NAF5), we arrive

$$
N(f(x)-R(x), a, r) \geq N^{\prime}(\alpha(x, 0,0, \ldots, 0), a, r(\varphi(2 / n)-\varphi(\tau)))
$$

for all $x, a \in X$ and all $r>0$. To prove R satisfies (1.2), replacing ($x, y_{1}, y_{2}, \cdots, y_{n}$) by $\left((n / 2)^{k} x,(n / 2)^{k} y_{1},(n / 2)^{k} y_{2}, \cdots,(n / 2)^{k} y_{n}\right)$ in (5.3), respectively, we obtain
$N\left((n / 2)^{k} D F\left((n / 2)^{k} x,(n / 2)^{k} y_{1},(n / 2)^{k} y_{2}, \cdots,(n / 2)^{k} y_{n}\right), a, r\right) \geq N^{\prime}\left(\alpha\left((n / 2)^{k} x,(n / 2)^{k} y_{1},(n / 2)^{k} y_{2}, \cdots,(n / 2)^{k} y_{n}\right), a, \varphi(2 / n)^{k} r\right)$
for all $r>0$ and all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$. Now,

$$
\begin{align*}
& N\left(R((2 / n) x)-\sum_{l=1}^{n}\left(\frac{R\left(x+l y_{l}\right) R\left(x-l y_{l}\right)}{R\left(x+l y_{l}\right)+R\left(x-l y_{l}\right)}\right), a, r\right) \geq \min \left\{N\left(R((2 / n) x)-(n / 2) f((n / 2)(2 / n) x), a, \frac{r}{3}\right),\right. \tag{5.17}\\
& N\left(-R\left(\sum_{l=1}^{n}\left(\frac{R\left(x+l y_{l}\right) R\left(x-l y_{l}\right)}{R\left(x+l y_{l}\right)+R\left(x-l y_{l}\right)}\right)\right)+(n / 2) f\left(\sum_{l=1}^{n}\left(\frac{f\left((n / 2)\left(x+l y_{l}\right)\right) f\left((n / 2)\left(x-l y_{l}\right)\right)}{f\left((n / 2)\left(x+l y_{l}\right)\right)+f\left((n / 2)\left(x-l y_{l}\right)\right)}\right)\right), a, \frac{r}{3}\right), \\
&\left.N\left((n / 2) f((n / 2)(2 / n) x)-(n / 2) f\left(\sum_{l=1}^{n}\left(\frac{f\left((n / 2)\left(x+l y_{l}\right)\right) f\left((n / 2)\left(x-l y_{l}\right)\right)}{f\left((n / 2)\left(x+l y_{l}\right)\right)+f\left((n / 2)\left(x-l y_{l}\right)\right)}\right)\right), a, \frac{r}{3}\right)\right\} \tag{5.18}
\end{align*}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$. Using (5.17) and (NAF5) in (5.18), we arrive

$$
\begin{align*}
N\left(D R\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), a, r\right) & \geq \min \left\{1,1,1, N^{\prime}\left(\alpha\left((n / 2)^{k} x,(n / 2)^{k} y_{1}, \ldots,(n / 2)^{k} y_{1}\right), a, \varphi\left((2 / n)^{k}\right) r\right)\right\} \\
& \geq N^{\prime}\left(\alpha\left((n / 2)^{k} x,(n / 2)^{k} y_{1}, \ldots,(n / 2)^{k} y_{1}\right), a, \varphi\left((2 / n)^{k}\right) r\right) \tag{5.19}
\end{align*}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$. Letting $k \rightarrow \infty$ in (5.19) and using (5.2), we see that

$$
N\left(D R\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), a, r\right)=1
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$. Using (NAF2) in the above inequality, we get

$$
R\left(\frac{2 x}{n}\right)=\sum_{l=1}^{n}\left(\frac{R\left(x+l y_{l}\right) R\left(x-l y_{l}\right)}{R\left(x+l y_{l}\right)+R\left(x-l y_{l}\right)}\right)
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$. Hence R satisfies the reciprocal functional equation (1.2). In order to prove $R(x)$ is unique, let $R^{\prime}(x)$ be another reciprocal functional equation satisfying (5.4) and (5.5). Hence,

$$
\begin{aligned}
N(R(x)- & \left.R^{\prime}(x), a, r\right) \\
& \geq \min \left\{N\left((n / 2)^{k} R\left((n / 2)^{k} k\right)-(n / 2)^{k} f\left((n / 2)^{k} k\right), a, \frac{r}{2}\right), N\left((n / 2)^{k} R^{\prime}\left((n / 2)^{k} k\right)-(n / 2)^{k} f\left((n / 2)^{k} k\right), a, \frac{r}{2}\right)\right\} \\
& \geq N^{\prime}\left(\alpha\left((n / 2)^{k} x, 0,0, \ldots, 0\right), a, \frac{r \varphi\left((2 / n)^{k}\right)(\varphi(2 / n)-\varphi(\tau))}{2}\right) \geq N^{\prime}\left(\alpha(x, 0,0, \ldots, 0), a, \frac{r \varphi\left((2 / n)^{k}\right)(\varphi(2 / n)-\varphi(\tau))}{2 \varphi\left(\tau^{k}\right)}\right)
\end{aligned}
$$

for all $x, a \in X$ and all $r>0$. Since $\lim _{k \rightarrow \infty} \frac{r \varphi\left((2 / n)^{k}\right)(\varphi(2 / n)-\varphi(\tau))}{2 \varphi\left(\tau^{k}\right)}=\infty$, we obtain

$$
\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha(x, 0,0, \ldots, 0), a, \frac{r \varphi\left((2 /)^{k}\right)(\varphi(2 / n)-\varphi(\tau))}{2 \varphi\left(\tau^{k}\right)}\right)=1
$$

Thus $N\left(R(x)-R^{\prime}(x), a, r\right)=1$ for all $x, a \in X$ and all $r>0$, hence $R(x)=R^{\prime}(x)$. Therefore $R(x)$ is unique. For $\gamma=-1$, we can prove the result by a similar method. This completes the proof of the theorem.
The following Corollary is an immediate consequence of Theorem 5.1 concerning the stabilities of (1.2).
Corollary 5.2 Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N\left(D F\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), a, r\right) \geq \begin{cases}N^{\prime}(\varepsilon, a, r), \tag{5.20}\\ N^{\prime}\left(\varepsilon\left(\|x\|^{s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{s}\right), a, r\right), & s \neq-1 ; \\ N^{\prime}\left(\varepsilon\left(\|x\|^{s} \prod_{i=1}^{n}\left\|y_{i}\right\|^{s}+\left\|x_{i}\right\|^{(n+1) s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{(n+1) s}\right), a, r\right), & s \neq \frac{-1}{n+1} ;\end{cases}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$, where ε, s are constants with $\varepsilon>0$. Then there exists a unique reciprocal mapping $R: X^{n+1} \rightarrow Y$ such that

$$
N(f(x)-R(x), r) \geq\left\{\begin{array}{l}
N^{\prime}(2 \varepsilon, a, r|\varphi(2)-\varphi(n)|) \tag{5.21}\\
N^{\prime}\left(2^{s+1} \varepsilon\|x\|^{s}, a, r\left|\varphi\left(2^{s+1}\right)-\varphi\left(n^{s+1}\right)\right|\right) \\
N^{\prime}\left(2^{(n+1) s+1} \varepsilon\|x\|^{(n+1) s}, r\left|\varphi\left(2^{(n+1) s+1}\right)-\varphi\left(n^{(n+1) s+1}\right)\right|\right)
\end{array}\right.
$$

for all $x, a \in X$ and all $r>0$.

6. NON-ARCHIMEDEAN FUZZY $\varphi-2$ - NORMED STABILITY: FIXED POINT METHOD

In this section, using the fixed point alternative approach, we prove the generalized Ulam-Hyers stability of the functional equation (1.2) in fuzzy $\varphi-2$ - normed spaces. Throughout this section, assume that R be a non-Archimedean field, X be vector space over $R,\left(Y, N^{\prime}, \diamond\right)$ be a non-Archimedean fuzzy $\varphi-2$ - Banach space over R and $\left(Z, N^{\prime}, \diamond\right)$ be a nonArchimedean fuzzy $\varphi-2-$ normed space.

Theorem 6.1 Let $f: X \rightarrow Y$ be a mapping for which there exist a function with the condition $\alpha: X^{n+1} \rightarrow Z$ with the condition

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathrm{~N}^{\prime}\left(\alpha\left(v_{i}^{k} x, v_{i}^{k} y_{1}, \cdots, v_{i}^{k} y_{n}\right), a, \frac{r}{\varphi\left(v_{i}^{k}\right)}\right)=1 \tag{6.1}
\end{equation*}
$$

Where $v_{i}=\frac{2}{n}$ if $i=0$ and $v_{i}=\frac{n}{2}$ if $i=1$ such that the functional inequality

$$
\begin{equation*}
N\left(D F\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), a, r\right) \geq N^{\prime}\left(\alpha\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), a, r\right) \tag{6.2}
\end{equation*}
$$

for all $x, y_{1}, y_{2}, \cdots, y_{n}, a \in X$ and all $r>0$. If there exists L such that the function

$$
x \rightarrow \beta(x)=\alpha\left(\frac{n x}{2}, 0,0, \cdots, 0\right)
$$

has the property

$$
\begin{equation*}
N^{\prime}(\beta(x), a, r)=N^{\prime}\left(L \cdot v_{i} \beta\left(v_{i} x\right), a, r\right) \tag{6.3}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$. Then there exists a unique reciprocal mapping $R: X \rightarrow Y$ satisfying the functional equation (1.2) and

$$
\begin{equation*}
N(R(x)-f(x), a, r) \geq N^{\prime}\left(\left(\frac{L^{1-i}}{1-L}\right) \beta(x), a, r\right) \tag{6.4}
\end{equation*}
$$

for all $x, a \in X$ and all $r>0$.
Proof. Consider the set $\Omega=\{g / g: X \rightarrow Y, g(0)=0\}$ and introduce the generalized metric on Ω,

$$
d(g, h)=\inf \left\{K \in(0, \infty) / N(g(x)-h(x), a, r) \geq N^{\prime}(K \beta(x), a, r), x \in X, r>0\right\}
$$

It is easy to see that (Ω, d) is complete. Define $T: \Omega \rightarrow \Omega$ by $T g(x)=v_{i} g\left(v_{i} x\right)$, for all $x \in X$. One can show that $d(T g, T h) \leq L d(g, h)$, for all $p, q \in \Omega$. i.e., T is a strictly contractive mapping on Ω with Lipschitz constant $L=v_{i}$.
Replacing ($x, y_{1}, y_{2}, \cdots, y_{n}$) by ($x, 0,0, \cdots, 0$) in (6.2), we get,

$$
\begin{array}{r}
N(f((2 / n) x)-(n / 2) f(x), a, r) \geq N^{\prime}(\alpha(x, 0,0, \cdots, 0), a, r) \\
\text { i.e., } N\left((2 / n) f((2 / n) x)-f(x), a, \frac{r}{\varphi(n / 2)}\right) \geq N^{\prime}(\alpha(x, 0,0, \cdots, 0), a, r) \tag{6.5}
\end{array}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$. Using (6.3) for the case $i=0$ it reduces to

$$
\begin{gathered}
N\left((2 / n) f((2 / n) x)-f(x), a, \frac{r}{\varphi(n / 2)}\right) \geq N^{\prime}(\beta(x), a, r) \text { for all } x, a \in X, r>0 \\
\text { i.e., } d(T f, f) \leq L \Rightarrow d(f, T f) \leq L=L^{1}<\infty
\end{gathered}
$$

Again replacing x by $(n / 2) x$, in (6.5), we get

$$
\begin{equation*}
N(f(x)-(n / 2) f((n / 2) x), a, r) \geq N^{\prime}\left(\alpha\left(\frac{n x}{2}, 0,0, \cdots, 0\right), a, r\right) \text { for all } x, a \in X, r>0 \tag{6.6}
\end{equation*}
$$

Using (6.3) for the case $i=1$ it reduces to

$$
\begin{gathered}
N(f(x)-(n / 2) f((n / 2) x), a, r) \geq N^{\prime}(\beta(x), a, r) \quad \text { for all } x, a \in X, r>0 \\
\text { i.e., } d(f, T f) \leq 1 \Rightarrow d(f, T f) \leq 1=L^{0}<\infty
\end{gathered}
$$

In both cases, we have

$$
\begin{equation*}
d(f, T f) \leq L^{1-i} \tag{6.7}
\end{equation*}
$$

Therefore (A i) holds. By (A ii), it follows that there exists a fixed point R of T in Ω such that

$$
\begin{equation*}
R(x)=N-\lim _{k \rightarrow \infty} v_{i}^{k} f\left(v_{i}^{k} x\right) \tag{6.8}
\end{equation*}
$$

To prove that R satisfies (1.2), replacing $\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)$ by $\left(v_{i}^{k} x, v_{i}^{k} y_{1}, \cdots, v_{i}^{k} y_{n}\right)$ in (6.2), we obtain

$$
N\left(v_{i}^{k} D f\left(v_{i}^{k} x, v_{i}^{k} y_{1}, v_{i}^{k} y_{2}, \cdots, v_{i}^{k} y_{n}\right), a, r\right) \geq N^{\prime}\left(\alpha\left(v_{i}^{k} x, v_{i}^{k} y_{1}, v_{i}^{k} y_{2}, \cdots, v_{i}^{k} y_{n}\right), a, \frac{r}{\varphi\left(v_{i}^{k}\right)}\right)
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$. Letting $k \rightarrow \infty$ in the above inequality and using the definition of $R(x)$, we see that R satisfies (1.2) for all $x, y_{1}, y_{2}, \cdots, y_{n} \in X$. Therefore the mapping R is reciprocal.

By (A iii), since R is the unique fixed point of T in the set $\Delta=\{f \in \Omega: d(f, R)<\infty\}, R$ is the unique function such that

$$
N(f(x)-R(x), a, r) \geq N^{\prime}(K \beta(x), a, r)
$$

for all $x, a \in X$ and all $r>0, K>0$. Again by (A iv), we obtain $d(f, R) \leq \frac{1}{1-L} d(f, T f)$ this implies $d(f, R) \leq \frac{L^{1-i}}{1-L}$ which yields $N(f(x)-R(x), a, r) \geq N^{\prime}\left(\left(\frac{L^{1-i}}{1-L}\right) \beta(x), a, r\right)$ for all $x, a \in X$ and all $r>0$. This completes the proof of the theorem.
From Theorem 6.1, we obtain the following corollary concerning the stability of (1.2).
Corollary 6.2 Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
N\left(D f\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), a, r\right) \geq \begin{cases}N^{\prime}(\lambda, a, r), \tag{6.9}\\ N^{\prime}\left(\lambda\left(\|x\|^{s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{s}\right), a, r\right), & s \neq-1 ; \\ N^{\prime}\left(\lambda\left(\|x\|^{s} \prod_{i=1}^{n}\left\|y_{i}\right\|^{s}+\left\|x_{i}\right\|^{(n+1) s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{(n+1) s}\right), a, r\right), & s \neq \frac{-1}{n+1} ;\end{cases}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$, where λ, s are constants with $\lambda>0$. Then there exists a unique reciprocal mapping $R: X^{n+1} \rightarrow Y$ such that

$$
N(f(x)-R(x), r) \geq\left\{\begin{array}{l}
N^{\prime}(2 \lambda, a, r|\varphi(2)-\varphi(n)|) \tag{6.10}\\
N^{\prime}\left(2^{s+1} \lambda \beta(x), a, r\left|\varphi\left(2^{s+1}\right)-\varphi\left(n^{s+1}\right)\right|\right), \\
N^{\prime}\left(2^{(n+1) s+1} \lambda \beta(x), r\left|\varphi\left(2^{(n+1) s+1}\right)-\varphi\left(n^{(n+1) s+1}\right)\right|\right),
\end{array}\right.
$$

for all $x, a \in X$ and all $r>0$.
Proof: Setting $\alpha\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)=\left\{\begin{array}{l}\lambda, \\ \lambda\left\{\|x\|^{s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{s}\right\}, \\ \lambda\left(\|x\|^{s} \prod_{i=1}^{n}\left\|y_{i}\right\|^{s}+\left\|x_{i}\right\|^{(n+1) s}+\sum_{i=1}^{n}\left\|y_{i}\right\|^{(n+1) s}\right)\end{array}\right.$
for all $x, y_{1}, y_{2}, \ldots, y_{2} \in X$. Now,

$$
\left.\begin{array}{rl}
N^{\prime}\left(v_{i}^{k} \alpha\left(v_{i}^{k} x, v_{i}^{k} y_{1}, v_{i}^{k} y_{2}, \ldots, v_{i}^{k} y_{n}\right), a, r\right)= & \left\{\begin{array}{l}
N^{\prime}\left(v_{i}^{k} \lambda, a, r\right), \\
N^{\prime} \\
\left(v_{i}^{k} \lambda\left\{\left\|v_{i}^{k} x\right\|^{s}+\sum_{i=1}^{n}\left\|v_{i}^{k} y_{i}\right\|^{s}\right\}, a, r\right), \\
N^{\prime}\left(v_{i}^{k} \lambda\left(\left\|v_{i}^{k} x\right\|^{s} \prod_{i=1}^{n}\left\|v_{i}^{k} y_{i}\right\|^{s}+\left\|v_{i}^{k} x_{i}\right\|^{(n+1) s}+\sum_{i=1}^{n}\left\|v_{i}^{k} y_{i}\right\|^{(n+1) s}\right), a, r\right.
\end{array}\right) \\
= & \rightarrow 1 \text { as } k \rightarrow \infty, \\
\rightarrow 1 \text { as } k \rightarrow \infty,
\end{array}\right] \begin{aligned}
& \rightarrow \infty, \infty,
\end{aligned}
$$

for all $x, y_{1}, y_{2}, \ldots, y_{2}, a \in X$ and all $r>0$.Thus, (4.1) is holds. But we have $\beta(x)=\alpha\left(\frac{n x}{2}, 0, \ldots, 0,0\right)$, has the property $\beta(x)=L \cdot v_{i} \beta\left(v_{i} x\right)$ for all $x \in X$. Hence

$$
\beta(x)=\alpha\left(\frac{n x}{2}, 0, \ldots, 0,0\right)=\left\{\begin{array}{l}
\lambda, \\
\lambda\left\{\left\|\frac{n x}{2}\right\|^{s}+0+\ldots+0\right\} \\
\lambda\left(0+\left\|\frac{n x}{2}\right\|^{(n+1) s}+0+\ldots+0\right)
\end{array}\right.
$$

Now, $N^{\prime}\left(v_{i} \beta\left(v_{i} x\right), a, r\right)=\left\{\begin{array}{l}N^{\prime}\left(\lambda v_{i}, a, r\right), \\ N^{\prime}\left(\lambda v_{i}^{s+1}\left(\frac{n}{2}\right)^{s}\|x\|^{s}, a, r\right), \\ N^{\prime}\left(\lambda v_{i}^{(n+1) s+1}\left(\frac{n}{2}\right)^{(n+1) s}\|x\|^{(n+1) s}, a, r\right) .\end{array}=\left\{\begin{array}{l}N^{\prime}\left(v_{i} \beta(x), a, r\right), \\ N^{\prime}\left(v_{i}^{s+1} \beta(x), a, r\right), \\ N^{\prime}\left(v_{i}^{(n+1) s+1} \beta(x), a, r\right) .\end{array}\right.\right.$
Hence the inequality (6.3) holds either, $L=(2 / n)$ if $i=0$ and $L=(n / 2)$ if $i=1, \quad L=(2 / n)^{s+1}$ for $s<-1$ if $i=0$ and $L=(n / 2)^{s+1}$ for $s>-1$ if $i=1, \quad L=(2 / n)^{(n+1) s+1}$ for $s<-\frac{1}{n+1}$ if $i=0 \quad$ and $L=(n / 2)^{(n+1) s+1}$ for $s>-\frac{1}{n+1}$ if $i=1$.
From (6.4), we arrive (6.10). Hence the proof is complete.

7. APPLICATIONS OF THE FUNCTIONAL EQUATIONS (1.1) AND (1.2)

Consider the additive functional equation (1.1), that is

$$
f(x)=\sum_{l=1}^{n}\left(\frac{f\left(x+l y_{l}\right)+f\left(x-l y_{l}\right)}{2 n}\right) .
$$

This functional equation can be used to find the n-consecutive terms of an arithmetic progression. Since $f(x)=x$ is the solution of the functional equation, the above equation is written as follows

$$
x=\sum_{l=1}^{n}\left(\frac{\left(x+l y_{l}\right)+\left(x-l y_{l}\right)}{2 n}\right) .
$$

Now, let us take the variables as consecutive terms, we note that the middle term of any n-consecutive terms of an arithmetic progression is always the arithmetic mean of the other n terms.

Any n consecutive terms of an arithmetic progression differ by the common difference, d. So any n consecutive terms of an arithmetic progression can be written as

$$
b-n d, \ldots, b-2 d, b-d, b, b+d, b+2 d, \ldots, b+n d .
$$

The middle term b can be represented by

$$
b=\frac{(b-d)+(b+d)+(b-2 d)+(b+2 d)+\ldots+(b-n d)+(b+n d)}{2 n} .
$$

i.e., b is the arithmetic mean of

$$
(b-d)+(b+d)+(b-2 d)+(b+2 d)+\ldots+(b-n d)+(b+n d) .
$$

Consider the reciprocal functional equation (1.2), that is

$$
f\left(\frac{2 x}{n}\right)=\sum_{l=1}^{n}\left(\frac{f\left(x+l y_{l}\right) f\left(x-l y_{l}\right)}{f\left(x+l y_{l}\right)+f\left(x-l y_{l}\right)}\right)
$$

This functional equation can be used to find the n-consecutive terms of a harmonic progression. Since $f(x)=\frac{1}{x}$ is the solution of the functional equation, the above equation is written as follows

$$
\frac{n}{2 x}=\sum_{l=1}^{n}\left(\frac{\frac{1}{x+l y_{l}} \frac{1}{x-l y_{l}}}{\frac{1}{x+l y_{l}}+\frac{1}{x-l y_{l}}}\right)
$$

Now, let us take the variables as n-consecutive terms, we note that half of the middle term of any n consecutive terms of a harmonic progression is always the division of product and sum of the other two terms.

Any n-consecutive terms of a harmonic progression differ by the common difference, d. So any n-consecutive terms of a harmonic progression can be written as

$$
\frac{1}{b-n d}, \cdots, \frac{1}{b-2 d}, \frac{1}{b-d}, \frac{1}{b}, \frac{1}{b+d}, \frac{1}{b+2 d}, \cdots, \frac{1}{b+n d} .
$$

The half of the middle term $\frac{1}{b}$ can be represented by

$$
\frac{n}{2 b}=\sum_{l=1}^{n}\left(\frac{\frac{1}{b+l d_{l}} \frac{1}{b-l d_{l}}}{\frac{1}{b+l d_{l}}+\frac{1}{b-l d_{l}}}\right) .
$$

8. REFERENCES

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
[3] M. Arunkumar, G. Vijayanandharaj, S. Karthikeyan, Solution and Stability of a Functional Equation Originating From nConsecutive Terms of an Arithmetic Progression, Universal Journal of Mathematics and Mathematical Sciences, 2, 2012, 161-171.
[4] M. Arunkumar, S. Karthikeyan, Solution And Stability Of A Reciprocal Functional Equation Originating From nConsecutive Terms Of A Harmonic Progression: Direct And Fixed Point Methods, International Journal of Information Science and Intelligent system, Vol. 3(1), pp. 151-168, 2014.
[5] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20, $87,1986$.
[6] S.S. Chang, Y. J. Cho, and S. M. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers, Huntington, NY, USA, 2001.
[7] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[8] L. Cadariu, V. Radu, Fixed points and the stability of Jensen's functional equation. J. Inequal. Pure and Appl. Math. 4(1) (2003), Art. 4
[9] L. Cadariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, 2008, Article ID 749392, (2008), 15 pages.
[10] L. Cadariu, V. Radu, A generalized point method for the stability of Cauchy functional equation, In Functional Equations in Mathematical Analysis, Th. M. Rassias, J. Brzdek (Eds.), Series Springer Optimization and Its Applications 52, 2011.
[11] G. Deschrijver, E.E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 23 (2003), 227-235.
[12] Z. Gajda, On stability of additive mappings, International Journal of Mathematics and Mathematical Sciences, vol. 14, no. 3, pp. 431-434, 1991.
[13] T. Gantner, R. Steinlage, R. Warren, Compactness in fuzzy topological spaces, J. Math. Anal. Appl. 62 (1978) 547-562.
[14] P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl., 184 (1994), 431-436.
[15] I. Golet, On Generalized Fuzzy Normed Spaces, International Mathematical Forum, 4, 2009, no. 25, 1237-1242.
[16] D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224.
[17] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables,Birkhauser, Basel, 1998.
[18] U. Hoehle, Fuzzy real numbers as Dedekind cuts with respect to a multiple-valued logic, Fuzzy Sets Syst. 24 (1987) 263278.
[19] S. B. Hosseini, D. O'Regan, R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Syst, 4 (2007) 53- 64.
[20] S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[21] S.M. Jung, A fixed point approach to the stability of the equation $f(x+y)=\frac{f(x) f(y)}{f(x)+f(y)}$. The Australian J. Math. Anal. Appl. 6(1) (2009), 1-6.
[22] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
[23] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215-229.
[24] O. Kaleva, The completion of fuzzy metric spaces, J. Math. Anal. Appl. 109 (1985), 194-198.
[25] O. Kaleva, A comment on the completion of fuzzy metric spaces, Fuzzy Sets Syst. 159(16) (2008), 2190-2192.
[26] H.A. Kenary, S.Y.Jang, C. Park, Fixed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces, Fixed Point Theory and Applications, doi:10.1186/1687-1812-2011-67.
[27] R. Lowen, Fuzzy Set Theory, (Ch. 5 : Fuzzy real numbers), Kluwer, Dordrecht, 1996.
[28] B. Margoils, J.B. Diaz , A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull.Amer. Math. Soc. 12674 (1968), 305-309.
[29] A.K. Mirmostafaee, M.S. Moslehian, Fuzzy version of Hyers-Ulam-Rassias theorem, Fuzzy sets Syst. 159(6) 2008, 720729.
[30] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039-1046.
[31] V. Radu, The Fixed point alternative and the stability of functional equations, Fixed Point Theory, 4, (2003), No.1, 91-96.
[32] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.
[33] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bulletin des Sciences Math'ematiques, vol. 108, no. 4, pp. 445-446, 1984.
[34] J. M. Rassias, On a new approximation of approximately linear mappings by linear mappings, Discussiones Mathematicae, vol. 7, pp. 193-196, 1985.
[35] J. M. Rassias, Solution of a problem of Ulam, Journal of Approximation Theory, vol. 57, no. 3, pp. 268-273, 1989.
[36] J. M. Rassias, On the stability of the Euler-Lagrange functional equation, Chinese Journal of Mathematics, vol. 20, no. 2, pp. 185-190, 1992.
[37] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.
[38] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
[39] K. Ravi, M. Arunkumar, J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
[40] K. Ravi, B.V. Senthil Kumar, Ulam-Gavruta-Rassias stability of Rassias Reciprocal functional equation, Global J. of Appl. Math. and Math. Sci., 2008.
[41] K. Ravi, B.V. Senthil Kumar, Ulam stability of Generalized Reciprocal funtional equation in several variables, Int. J. App. Math. and Stat., 19 (D10) (2010),1-19.
[42] S.E. Rodabaugh, Fuzzy addition in the L-fuzzy real line, Fuzzy Sets Syst. 8 (1982) 39-51.
[43] R. Saadati, J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006), 331-344.
[44] R. Saadati, J.H. Park, Intuitionstic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), 85-90.
[45] I. Sadeqi, M. Salehi, Fuzzy compacts operators and topological degree theory, Fuzzy Sets Syst. 160(9) (2009), 1277-1285.
[46] S. Shakeri, Intuitionstic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appli. Vol. 2 No. 2 (2009), 105-112.
[47] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.
[48] J. Xiao, X. Zhu, On linearly topological structure and property of fuzzy normed linear space, Fuzzy Sets Syst, 125 (2002), 153-161.
[49] J. Xiao, X. Zhu, Topological degree theory and fixed point theorems in fuzzy normed space, Fuzzy Sets Syst, 147 (2004), 437-452.
[50] Zhou .Ding -Xuan, On a conjecture of Z. Ditzian, J. Approx. Theory, 69 (1992), 167-172.

