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ABSTRACT 
 

In this paper, the authors established the generalized Ulam - Hyers stability of additive functional equation 
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which is originating from arithmetic mean of n consecutive terms of  an arithmetic progression in Intuitionistic fuzzy 

normed spaces and  reciprocal functional equation  

1

( ) ( )2

( ) ( )

n
l l

l l l

h x ly h x lyx
h

n h x ly h x ly

   
   

     
  

originating from n-consecutive terms of a harmonic progression in Non - Archimedean Fuzzy 2    normed spaces 

using direct and fixed point methods. Applications of the above functional equations are also given. 

 

Keywords: Additive functional equation, Reciprocal functional equation, generalized Ulam-Hyers stability, Intuitionistic 

fuzzy normed spaces, Non - Archimedean Fuzzy 2    normed spaces, fixed point method. 

2010 hematics Subject Classification: 39B52, 32B72, 32B82. 

 

 

1. INTRODUCTION 

 

In 1940, S.M. Ulam [47] introduced the stability of functional equations. Next year 1941, D. H. Hyers [16] gave first 

confirmatory answer to the Ulam question for Banach spaces. In 1978, Hyers theorem was generalized by Th.M. Rassias 

[37]. Gajda [12] answered the question for the case 1p  in the year 1991, which was raised by Rassias. This stability 

results is known as generalized Hyers-Ulam stability of functional equations (see [1, 2, 14, 20, 22, 26, 38]). During the 

years 1982–1994, Rassias  [32-36] investigated the Ulam stability problem for different mappings involving a product of 

different powers of norms. Recently, Rassias gave the mixed product sum of powers of norms control function [39]. We 

also refer the readers to the books: P. Czerwik [7] and D.H. Hyers, G. Isac and Th.M. Rassias [17].  

 

In 2003, V. Radu [31] introduced a new method, successively developed in [8-10], to obtaining the existence of the exact 

solutions and the error estimations, based on the fixed point alternative. The stability of several functional equations 

have been extensively investigated by a number of mathematicians and there are many interesting results concerning this 

problem (see [3, 4, 21, 23-25, 40, 41]). 

  

In this paper, the authors proved the generalized Ulam - Hyers stability of an additive functional equation 
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                                                           (1.1) 

which is originating from arithmetic mean of n consecutive terms of an arithmetic progression in Intuitionistic fuzzy 

normed spaces, and  reciprocal functional equation  
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Which is originating from n-consecutive terms of an harmonic progression in Non - Archimedean Fuzzy 2    normed 

spaces using direct and fixed point methods. Applications of the above functional equations are also investigated. 

 

2. PRELIMINARIES OF INTUITIONISTIC FUZZY NORMED AND NON-ARCHIMEDEAN FUZZY 2

NORMED SPACES 

In this section, we give some basic definitions and lemmas for the main results in this article. 

Definition 2.1. Let  and   be membership and nonmembership degree of an intuitionistic fuzzy set from  0,X    to 

[0,1] such that ( ) ( ) 1x xt t    for all x X and all 0t  . The triple  ,, ,X P M  is said to be an intuitionistic fuzzy 

normed space (briefly IFN-space) if X  is a vector space, M  is a continuous t −representable and 
,µP 

is a mapping 

 0, *X L   satisfying the following conditions: for all ,x y X and , 0t s  , 

 

, * , *

, , , * , ,

( 1) ( ,0)  0 ; ( 2) ( , )  1  if and only if 0;

( 3) ( , )  ,  for all 0; ( 4) ( , )  M ( , ), ( , ) .
| |

µ L µ L

µ µ µ L µ µ

IFN P x IFN P x t x

t
IFN P x t P x IFN P x y t s P x t P y s

 

     


  

 
     

 

 

In this case, 
,µP   

is called an intuitionistic fuzzy norm.  Here  . ( , ) ( ), ( ) .x xP x t t t     

Example 2.2. Let  , .X  be a normed space. Let 
2 2( , ) ( , min ( ,1))T a b a b a b 

 
for all 

1 2 1 2( , ), ( , ) *a a a b b b L   and 

, 
 
be membership and non-membership degree of an intuitionistic fuzzy set defined by 

 .

|| ||
( , ) ( ), ( ) , , .

|| || || ||
x x

t x
P x t t t t R

t x t x
     

    
  

 

Then 
,( , , )X P T   is an IFN-space. 

Definition 2.3.  A sequence  nx in an IFN-space 
,( , , )X P T  is called a Cauchy sequence if, for any 0  and 0t  , there 

exists 
0n N such that  . *( , ) ( ), ,n m L sP x x t N    

 0, ,n m n   where  
sN  is the standard negator. 

Definition 2.4.  The sequence  nx is said to be convergent to a point x X  

.

. *(denoted by  ) if  ( , ) 1  as for every  0.
P

n n Lx x P x x t n t 

       

Definition 2.5. An IFN-space 
,( , , )X P T  is said to be complete if every Cauchy sequence in X  is convergent to a point 

x X . 

For further details about IFN space one can see ([5, 6, 1, 17-19, 30, 43, 44- 46, 48-50]). 

Based on [15], some basic definitions and notations in 2  normed spaces is provided.  

Definition 2.7 A t norm   is a two place function [0,1][0,1][0,1]•:   which is associative, commutative, non 

decreasing in each place and such that aa =1 , for all [0,1]a .  

Definition 2.8 Let   be a function defined on the real field   into itself with the following properties :   

    • ),(=)( tt    for every t ;  

    • 1=(1) ;  

    •   is strict increasing and continuous on )(0, ;  

    • 0=)(lim
0




 and 


=)(lim 


.  

Example 2.9 The functions   

    • |=|)(   for every   ;  

    • 
pp |=|)(   for every p  .  
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Definition 2.10 [7] Let L  be a linear space over the field R  of a dimension greater than one and let N  be a mapping 

defined on [0, )L L    with values into  0,1  satisfying the following conditions: for all , ,x y z L  and , [0, )s t    

 (NAF1) ( , ,0) = 0N x y ;           (NAF2) 1=),,( tyxN , for all 0>t  if and only if yx,  are linear dependent; 

 (NAF3) ( , , ) = ( , , )N x y t N y x t  for all ,x y L , and > 0t ;     (NAF4)  ( , ,max( , )) min ( , , ) ( , , )N x y z t s N x z t N y z s   ; 

 (NAF5) ( , , ) :[0, ) [0,1]N x y     is left continuous.              (NAF6)  
 

, , , , , .
t

N x y t N x y R 
 

 
  

 
 

  

 The triple ( , , )L N   will be called a non-Archimedean fuzzy 2   normed space.  

Example 2.11 Let  ,|| , ||L    be a non-Archimedean fuzzy 2   normed space. Then  

  
, > 0, ,

, =

0, 0,

t
t x X

t xN x t

t x X





  

 

Then ( , , )L N   is a non-Archimedean fuzzy 2   normed space.  

Definition 2.12 Let ( , , )L N   be a non-Archimedean fuzzy 2   normed space. Let 
nx  be a sequence in L . Then { }nx  

is said to be convergent if there exists x X  such that  

 ( , , ) =1lim n
n

N x x a t


  

for all a L  and > 0t . In that case, x  is called the limit of the sequence 
nx  and we denote it by  

 = .lim n
n

N x x


  

Definition 2.13 A sequence 
nx  in L  is called Cauchy if ( , , ) =1n p nN x x a t  for all a L , > 0p  and > 0t .  

Definition 2.14 Every convergent sequence in a non-Archimedean fuzzy 2   normed space is a Cauchy sequence. If 

every Cauchy sequence is convergent, then the non-Archimedean fuzzy 2   normed space is called a non-

Archimedean fuzzy 2    Banach space. 

For further details about non-Archimedean fuzzy 2   normed space one can see ([11, 15, 16, 27, 29, 42]) 

Definition 2.15 Let X  be a set. A function : [0, ]d X X   is called a generalized metric on X  if d  satisfies the 

following: 

(1)  , 0d x y   if and only if x y ;                              (2)    , ,d x y d y x  for all ,x y X ; 

(3)      , , ,d x y d x z d z y  for all , ,x y z X . 

For explicit later use, we recall a fundamental result in fixed point theory.  

Theorem 2.16 [28](The alternative of fixed point)  Suppose that for a complete generalized metric space ( , )X d  and a 

strictly contractive mapping :T X X  with Lipschitz constant L . Then, for each given element ,x X  either 

1( 1) ( , ) =   0,n nB d T x T x n     

or 

( 2)B  there exists a natural number 
0n  such that: 

)(i  1( , ) <n nd T x T x   for all 
0n n  ; 

)(ii The sequence ( )nT x  is convergent to a fixed point y  of ;T  

)(iii  y  is the unique fixed point of T  in the set 0= { : ( , ) < };
n

Y y X d T x y   

)(iv  
1

( , )   ( , )
1

d y y d y Ty
L

 


 for all .y Y   

 

 Throughout this paper we define a mapping :Df X Y by 
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for all 1 2, , ,..., nx y y y X and a mapping :DH X Y  such that 

1 2

1

( ) ( )2
( , , , , )

( ) ( )

n
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n

l l l

h x ly h x lyx
DH x y y y h

n h x ly h x ly

   
    

     
  

for all 
1 2, , , , nx y y y X . 

 

3. INTUITIONISTIC FUZZY NORMED SPACE STABILITY: DIRECT METHOD 

In this section, the authors present the generalized Ulam - Hyers stability of the functional equation (1.1) in  IFN - space 

using direct method. 

 

Throughout this section, let us consider 
,, ( , , )X Z P M   and 

,( , , )Y P M 
  are linear space, Intuitionistic fuzzy normed 

space and Complete Intuitionistic fuzzy normed space respectively.  

Theorem 3.1.  Let 
 { 1,1}    be fixed and let 1: nX Z    be a mapping such that for some b  with 0 < < 1

2

b


 
 
 

 

     *, ,2 ,2 ,0, ,0 , , ,0, ,0 , ,
L

P x x r P b x x r  

                                                                            (3.1) 

 for all x X  and all > 0, 0r b  and  

   *, 12 ,2 , ,2 ,2 = 1lim
k k k k

n L
k

P x y y r   

  



                               

 (3.2) 

 for all 1 2, , ,..., nx y y y X  and all > 0r . Suppose that a function :f X Y  satisfies the inequality  

            *, 1 2 , 1 2, , ,..., , , , ,..., ,n nL
P Df x y y y r P x y y y r    

                                         
                 

(3.3) 

for all 1 2, , ,..., nx y y y X  and all > 0r .  Then the limit  

*,

(2 )
( ) , 1 , 0

2

k

k L

f x
P A x r as k r



  

 
    

                         

 (3.4) 

exists for all x X  and the mapping :A X Y  is a unique additive mapping satisfying (1.1) and  

    *, ,( ) ( ), , ,0, ,0 , | 2 |
L

P f x A x r P x x rn b                 (3.5) 

for all x X  and all > 0r .  

Proof. First assume = 1 . Replacing  1 2, , ,..., nx y y y  by  , ,0,...,0x x  in (3.3), we arrive  

     *, ,2 ( ) (2 ), , ,0, ,0 ,
L

P nf x nf x r P x x r       

for all x X  and all > 0r .  Using ( 3)IFN  in the above equation, we get   

  *, ,

(2 )
( ) , , ,0, ,0 ,

2 2 L

f x r
P f x P x x r

n
    

 
  

 
   (3.6) 

for all x X  and all > 0r . Replacing x  by 2k x  in (3.6), we obtain  

  *

1

, ,

(2 )
(2 ) , 2 ,2 ,0, ,0 ,

2 2

k
k k k

L

f x r
P f x P x x r

n
    

 
  

 
 (3.7) 

 for all x X  and all > 0r . Using (3.1), ( 3)IFN  in (3.7), we arrive  

 *

1

, ,

(2 )
(2 ) , , ,0, ,0 ,

2 2

k
k

kL

f x r r
P f x P x x

n b
    

   
    
  

  

    (3.8) 

 for all x X  and all > 0r . It is easy to verify from (3.8), that  
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1

, ,11

(2 ) (2 )
, , ,0, ,0 ,

2 22

k k

k k kk L

f x f x r r
P P x x

n b
    





   
    

   
 (3.9) 

 holds for all x X  and all > 0r . Replacing r  by nb r  in (3.9), we get  

 
  *

1

, ,11

(2 ) (2 )
, , ,0, ,0 ,

2 22

k k k

k kk L

f x f x b r
P P x x r

n
    





 
  

 
  (3.10) 

 for all x X  and all > 0r . It is easy to see that  

 

11

1
=0

(2 ) (2 ) (2 )
( ) =

2 2 2

k i ik

k i i
i

f x f x f x
f x




                                                                                      (3.11) 

 for all x X . From equations (3.10) and (3.11), we have  

   

 

      

*

* *

11
1

, 0 , 1
=0

1

0 , ,

(2 ) (2 ) (2 )
( ) , ,

2 2 2 2 2 22

, ,0, ,0 , , ,0, ,0 ,

k i i i ik
k

ik i i iiL
i

k

iL L

f x b r f x f x b r
P f x M P

n n

M P x x r P x x r

   

    




 





     
      

      

  


                                        (3.12)

 

for all x X  and all > 0r . Replacing x  by 2m x  in (3.12) and using (3.1), ( 3)IFN , we obtain  

   
 *

1

, ,

=0

(2 ) (2 )
, , ,0, ,0 ,

2 2 2 2

m k m ik

m mk m i m L
i

f x f x b r r
P P x x

bn
    

 

 

   
    

   


         

                              (3.13) 

 for all x X  and all > 0r  and all , 0m k  . Replacing r  by 
mb r  in (3.13), we get  

 
  *

1

, ,

=

(2 ) (2 )
, , ,0, ,0 ,

2 2 22

m k m im k

m ik m L
i m

f x f x b r
P P x x r

n
    

  



 
  

 
  (3.14) 

 for all x X  and all > 0r  and all , 0m k  . It follows from (3.14) that  

 
 *, , 1

=

(2 ) (2 )
, , ,0, ,0 ,

2 2

2 2

m k m

m ik m m kL

i
i m

f x f x r
P r P x x

b

n

    


  

 
  
   
  
  


           (3.15) 

 for all x X  and all > 0r  and all , 0m k  . Since 0 < < 2b  and 
=0

<
2

ik

i

b 
 

 
 ,  this implies 

(2 )

2

k

k

f x 
 
   

is a Cauchy 

sequence in 
,( , , )Y P M 
 . Since ,( , , )Y P M 

  is a complete IFN space, this sequence converges to some point ( )A x Y . So 

one can define the mapping :A X Y  by  

*,

(2 )
( ) , 1 , 0

2

k

k L

f x
P A x r as k r 

 
    

 
                                                                          (3.16)  

for all .x X  Letting = 0m  in (3.15), we get  

 *, , 1

=0

(2 )
( ) , , ,0, ,0 ,

2

2 2

k

k ikL

i
i

f x r
P f x r P x x

b

n

    


 
  
   
  
  


  (3.17) 

 for all x X  and all > 0r . Letting k   in (3.17), we arrive  

     *, ,( ) ( ), , ,0, ,0 , (2 )
L

P f x A x r P x x rn b        

for all x X  and all > 0r . To prove A  satisfies the additive functional equation (1.1), replacing 
1 2( , , , , )nx y y y  by 

 1 22 ,2 ,2 ,...,2k k k k
nx y y y  and dividing by 2k  in (3.2), we obtain  

      *, 1 , 1

1
2 ,2 , ,2 , 2 ,2 , ,2 ,2

2

k k k k k k k

n nk L
P Df x y y r P x y y r    

 
 

 
 (3.18) 

for all 1 2, , ,..., nx y y y X  and  all > 0r .  Now,  
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k k k
n n

l ll l

k kL
l l

k k k

l l

k k
l

A x ly A x ly
P A x r

n

f x f x ly f x lyA x ly A x lyr r
M P A x P

n n

f x f x ly f x ly
P

n

 

   

 



 



    
   

  

                   
           

   
 
 
 



 

,
3

n r
 
 

  



        (3.19) 

for all 1 2, , ,..., nx y y y X  and all > 0r . Using (3.16), (3.18), (3.2) and ( 2)IFN  in (3.19), we arrive  

 
   

1 2

n
l l

l

A x ly A x ly
A x

n

   
  

 
  

for all 1 2, , ,..., nx y y y X . Hence A  satisfies the additive functional equation (1.1).  In order to prove ( )A x  is unique, let 

'( )A x  be another additive functional mapping satisfying (3.4) and (3.5). Hence,  

   

*

* *

, , , 3

, ,

(2 ) (2 ) '(2 ) (2 )
( ( ) '( ), ) , , ,

2 22 2 2 2

2 (2 ) 2 (2 )
2 ,2 ,0, ,0 , , ,0, ,0 ,

2 2

k k k k

k k k kL

k k
k k

kL L

A x f x r A x A x r
P A x A x r M P P

r n b r n b
P x x P x x

b

     

    

     
       

     

    
     
   

 

for all x X  and all > 0r . Since  
2 (2 )

= ,lim
2

k

k
k

r n b

b




  

we obtain    *,

2 (2 )
, ,0, ,0 , = 1 .lim

2

k

k L
k

r n b
P x x

b
  



 
  
 

 

Thus   

  *, ( ) '( ), = 1
L

P A x A x r  
 
for all x X  and all > 0r , hence ( ) = '( )A x A x . Therefore ( )A x  is unique.  

For = 1  , we can prove the result by a similar method. This completes the proof of the theorem.  

From Theorem 3.1, we obtain the following corollary concerning the stability for the functional equation (1.1). 

Corollary 3.2  Suppose that a function :f X Y  satisfies the inequality  

  

 

*

,

,

1, 1

( 1) ( 1)

,

11

, ,

, , 1
, , ,

1
, ,

1

n
s s

l

ln L

n n
s s n s n s

l l

ll

P r

P x y r s
P Df x y y r

P x y x y r s
n

 

 

 

 









 






   
    

    


               





           

 

 (3.20) 

for all all 1 2, , ,..., nx y y y X  and all > 0r , where , s  are constants with > 0 . Then there exists a unique additive 

mapping :A X Y  such that  

 

 

 

 

*

,

, ,

( 1) ( 1)

,

, ,

( ) ( ), 2 || || , 2 2 ,

2 || || , 2 2

s s

L

n s n s

P nr

P f x A x r P x rn

P x rn

 

   

 





  

 




  




 

                                (3.21) 

 for all x X  and all > 0r .  

 

4. INTUITIONISTIC FUZZY NORMED STABILITY: FIXED POINT METHOD 

In this section, using the fixed point alternative approach, we prove the generalized Ulam - Hyers stability of the 

functional equation (1.1) in  intuitionistic fuzzy normed spaces. Throughout this section, let us consider X , ,( , , )Z P M   

and ,( , , )Y P M 
  are linear space, Intuitionistic fuzzy normed space and Complete Intuitionistic fuzzy normed space. 
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For to prove the stability result we define the following:  
ia  is a constant such that  

 

2 = 0,

= 1
= 1

2

i

if i

a
if i







 

and   is the set such that  

  = | : , (0) = 0 .g g X Y g   

Theorem 4.1.  Let :f X Y  be a mapping for which there exist a function 1: nX Z    with the condition  

    *, 1 1, , , , = 1 , , , , , > 0lim
k k k k

i i i n i nL
k

P a x a y a y a r x y y X r  


                                                        

(4.1) 

and satisfying the functional inequality  

     *, 1 2 , 1 2 1 2, , , , , , , , , , , , , , , , > 0.n n nL
P Df x y y y r P x y y y r x y y y X r                                          (4.2) 

If there exists = ( )L L i  such that the function ( ) = , ,0, ,0 ,
2 2

x x
x x 

 
  

 
 

has the property  

 , ,

( )
, = ( ), , , > 0.i

i

a x
P L r P x r x X r

a
   




 
    
 

             (4.3) 

Then there exists unique additive function :A X Y  satisfying the functional equation (1.1) and  

  *

1

, ,( ) ( ), ( ), , , > 0.
1

i

L

L
P f x A x r P x nr x X r

L
    

  
        

        (4.4) 

Proof. Let d  be a general metric on ,  such that  

     *, ,( , ) = (0, ) | ( ) ( ), ( ), , , 0 .
L

d g h inf K P g x h x r P K x r x X r           

It is easy to see that  ,d  is complete. Define :T   by 
1

( ) = ( ),i

i

Tg x g a x
a

 for all x X . Now for all ,g h , 

        

     

   

   

 

*

*

*

*

, ,

, ,

, ,

, ,

, , ' ( ), , ,

1 1
, ' ( ), , ,

1 1
, ' ( ), , ,

( ) ( ), ' ( ), , ,

, .

L

i i i iL
i i

i i iL
i i i

L

d g h K P g x h x r P K x r x X

P g a x h a x r P K a x a r x X
a a

K
P g a x h a x r P a x r x X

a a a

P Tg x Th x r P KL x r x X

d Tg Th LK

   

   

   

   









    

 
    

 

   
      

   

   

 

 

This gives    , ,d Tg Th Ld g h , for all ,g h , i.e., T  is a strictly contractive mapping of   with Lipschitz constant 

1

i

L
a

 .  Replacing 
1 2( , , , , )nx y y y  by ( , ,0, ,0)x x  in (4.2), we get        

    *, ,2 ( ) (2 ), , ,0, ,0 , ,    , > 0.
L

P nf x nf x r P x x r x X r       
     

                                         (4.5) 

Using ( 3)IFN  in (4.5), we arrive  

  *, ,

(2 )
( ) , , ,0, ,0 ,2 ,    , > 0.

2 L

f x
P f x r P x x nr x X r    

 
    

             
 (4.6) 

 With the help of (4.3), when = 0i , it follows from (4.6), that  

  *, ,

(2 )
( ) , ,2 ,    , > 0.

2 L

f x
P f x r P x nr x X r    

 
    

 
 

          1 1, = .id f Tf L L L       (4.7) 
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 Replacing x  by 
2

x
 in (4.5), we obtain 

         *, ,2 , , ,0, ,0 , ,    , > 0.
2 2 2L

x x x
P f f x r P nr x X r    

      
         

      
 (4.8) 

 With the help of (4.3), when  =1i , it follows from (4.8), that  

 *, ,2 ( ), ( ), ,        , > 0,
2 L

x
P f f x r P x nr x X r    

  
     

  
 

                     0 1, 1 = .id Tf f L L                (4.9) 

 Then from (4.7) and (4.9), we can conclude 

  1, < .id f Tf L    

Now from the fixed point alternative in both cases, it follows that there exists a fixed point A  of T  in   such that  
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Replacing 
1( , , , )nx y y  by  1, , ,k k k

i i i na x a y a y  in (4.2), we arrive 
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           (4.11) 

In order to prove A satisfies (1.1), the proof is similar to that of Theorem 3.1. Using fixed point alternative, A is the 

uniquie fixed point in T the set 

  = | , < ,h d f A  
 

 
such that  

   *, ,( ) ( ), ( ), ,      , > 0.
L

P f x A x r P K x r x X r               (4.13) 

 Again using the fixed point alternative, we obtain  
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Hence, we have   
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 (4.14) 

This completes the proof of the theorem.  

From Theorem 4.1, we obtain the following corollary concerning the stability for the functional equation (1.1).  

Corollary 4.2 Suppose that a function :f X Y  satisfies the inequality 
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               (4.15) 

for all all 1 2, , ,..., nx y y y X  and all > 0r , where , s  are constants with > 0 . Then there exists a unique quadratic 

mapping :A X Y  such that  
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i.e., (3.1) is holds. But we have ( ) , ,0, ,0
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for all x X  . Hence the inequality (3.3) holds either, 12 sL   for 1s   if 0i   and 12sL   for 1s   if  1.i  From 

(5.4),
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Case:1 12 sL   for 1s   if 0i   ,. 
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Case:2 12sL   for 1s   if 1,i    
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Similarly, the inequality (4.3) holds either, 12L   if 0i   and 2L   if 1i   for condition (i) and the inequality (4.3) 

holds either, 1 ( 1)2 n sL   for 
1

1
s

n


  

if 0i   and ( 1) 12 n sL     for 
1

1
s

n



 if 1i   for condition (iii). Hence the proof is 

complete. 

 

 

5. NON-ARCHIMEDEAN FUZZY 2   NORMED STABILITY: DIRECT METHOD 

 

In this section, the generalized Ulam - Hyers stability of the additive functional equation (1.2) in non-Archimedean fuzzy 

2   normed space is provided. Here after, throughout this section, assume that R  be a non-Archimedean field, X  be 

vector space over R , ( , , )Y N   be a non-Archimedean fuzzy 2    Banach space over R  and ( , , )Z N   be an non-

Archimedean fuzzy 2    normed space.  

Theorem 5.1  Let { 1,1}    be fixed and let 1: nX Z    be a mapping such that for some   with 
 

 
0 < < 1

2
n
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    (5.1) 

 for all ,x a X  and all > 0r , and  
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         (5.2) 

 for all 
1 2 2, , ,..., ,x y y y a X  and all > 0r . Suppose that a function :f X Y  satisfies the inequality  

    1 2 1 2( , , , , ), , ( , , , , ), ,n nN DF x y y y a r N x y y y a r                                                                          

(5.3) 
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1 2 2, , ,..., ,x y y y a X  and all > 0r . Then the limit  
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                                                                                       (5.4) 

 exists for all x X  and the mapping :R X Y  is a unique reciprocal mapping satisfying (1.2) and  

       2( ) ( ), , ,0,...,0 , , ( )
2
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 for all ,x a X  and all > 0r .  

Proof. First assume = 1 .  1 2, , , , nx y y y by  ,0,0, ,0x   in (5.3), we get  

          2 , , ,0,0,...,0 , ,
2
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 for all ,x a X  and all > 0r . Replacing x  by  2
n x  in (5.6), we get 

           , , ,0,0,...,0 , ,
2 2 2

n n nN f x f x a r N x a r                                                                   (5.7) 
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 for all ,x a X  and all > 0r . Replacing r  by  1k r    in (5.9), we get 
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 for all ,x a X  and all > 0r . It is easy to verify that  
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International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

70 

 for all ,x a X  and all > 0r  and all , 0m k  . Since  20 < <
n

  and 
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is a 

Cauchy sequence in ( , )Y N . Since ( , )Y N  is a non-Archimedean fuzzy 2    Banach space, this sequence converges to 

some point  R x Y . So one can define the mapping :R X Y  by  
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 for all ,x a X  and all > 0r . Letting k   in (5.16) and using ( 5)NAF , we arrive  
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(5.18) 

 for all 
1 2 2, , ,..., ,x y y y a X  and all > 0r . Using (5.17) and ( 5)NAF  in (5.18), we arrive  
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(5.19) 

 for all 
1 2 2, , ,..., ,x y y y a X  and all > 0r . Letting k   in (5.19) and using (5.2), we see that  

   1 2, , , , , , = 1nN DR x y y y a r  

for all 
1 2 2, , ,..., ,x y y y a X  and all > 0r . Using ( 2)NAF  in the above inequality, we get  
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for all 
1 2 2, , ,..., ,x y y y a X . Hence R  satisfies the reciprocal functional equation (1.2). In order to prove  R x  is unique, 

let  'R x  be another reciprocal functional equation satisfying (5.4) and (5.5). Hence,  
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for all ,x a X  and all > 0r . Since  
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Thus     ' , , = 1N R x R x a r for all ,x a X  and all > 0r , hence    'R x R x . Therefore  R x  is unique. For = 1  , 

we can prove the result by a similar method. This completes the proof of the theorem. 

The following Corollary is an immediate consequence of Theorem 5.1 concerning the stabilities of (1.2).  

Corollary 5.2  Suppose that a function :f X Y  satisfies the inequality  
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 (5.20) 

 for all 
1 2 2, , ,..., ,x y y y a X  and all > 0r , where , s  are constants with > 0 . Then there exists a unique reciprocal 

mapping 1: nR X Y   such that  
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                          (5.21) 

 for all ,x a X  and all > 0r . 

 

6. NON-ARCHIMEDEAN FUZZY 2   NORMED STABILITY: FIXED POINT METHOD 

In this section, using the fixed point alternative approach, we prove the generalized Ulam-Hyers stability of the functional 

equation (1.2) in fuzzy 2   normed spaces. Throughout this section, assume that R  be a non-Archimedean field, X  

be vector space over R , ( , , )Y N   be a non-Archimedean fuzzy 2    Banach space over R  and ( , , )Z N   be a non-

Archimedean fuzzy 2    normed space.  
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Theorem 6.1  Let :f X Y  be a mapping for which there exist a function with the condition 1: nX Z    with the 

condition  
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Again replacing x  by  2
n x , in (6.5), we get 
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Using (6.3) for the case 1i   it reduces to  
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 In both cases, we have 

                                                 1, id f Tf L  .                                                                               (6.7) 
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Therefore (A i) holds. By (A ii), it follows that there exists a fixed point R  of T  in   such that  
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To prove that R  satisfies (1.2), replacing 
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for all 
1 2 2, , ,..., ,x y y y a X  and all 0r  . Letting k   in the above inequality and using the definition of ( )R x , we see 

that R  satisfies (1.2) for all 
1 2, , , , nx y y y X .  Therefore the mapping  R  is reciprocal. 

By (A iii), since R  is the unique fixed point of T  in the set   : , ,f d f R R      is the unique function 
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for all ,x a X  and all 0r  . This completes the proof of the 

theorem. 

From Theorem 6.1, we obtain the following corollary concerning the stability of (1.2). 

Corollary 6.2 Suppose that a function :f X Y  satisfies the inequality 
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Hence the inequality (6.3) holds either,
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From (6.4), we arrive (6.10). Hence the proof is complete.
 

 

7.  APPLICATIONS OF THE FUNCTIONAL EQUATIONS (1.1) AND (1.2) 

Consider the additive functional equation (1.1), that is 

   

1

( ) .
2

n
l l

l

f x ly f x ly
f x

n


   
   

 
  

This functional equation can be used to find the n -consecutive terms of an arithmetic progression. Since ( )f x x  is the 

solution of the functional equation, the above equation is written as follows 
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Now, let us take the variables as consecutive terms, we note that the middle term of any n -consecutive terms of an 

arithmetic progression is always the arithmetic mean of the other n  terms. 

 

Any n  consecutive terms of an arithmetic progression differ by the common difference, d . So any n  consecutive terms 

of an arithmetic progression can be written as  

,..., 2 , , , , 2 ,..., .b nd b d b d b b d b d b nd     

 The middle term b can be represented by 
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2

b d b d b d b d b nd b nd
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n

           
  

i.e., b  is the arithmetic mean of  
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Consider the reciprocal functional equation (1.2), that is 
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This functional equation can be used to find the n -consecutive terms of a harmonic progression. Since
1

( )f x
x

  is the 

solution of the functional equation, the above equation is written as follows 
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Now, let us take the variables as n -consecutive terms, we note that half of the middle term of any n  consecutive terms of 

a harmonic progression is always the division of product and sum of the other two terms. 

 

Any n -consecutive terms of a harmonic progression differ by the common difference, d . So any n - consecutive terms 

of a harmonic progression can be written as 

1 1 1 1 1 1 1
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