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ABSTRACT

In this paper, the authors established the generalized Ulam - Hyers stability of additive functional equation

Fo0 Z[ (x+ly, +f( —Iy,)j

which is originating from arithmetic mean of n consecutive terms of an arithmetic progression in Intuitionistic fuzzy
normed spaces and reciprocal functional equation

h(ﬁ}i( h(x+ 1y, )h(x~1y,) j
n T h(x+1ly,) +h(x=1y,)

originating from n-consecutive terms of a harmonic progression in Non - Archimedean Fuzzy ¢—2- normed spaces
using direct and fixed point methods. Applications of the above functional equations are also given.
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1. INTRODUCTION

In 1940, S.M. Ulam [47] introduced the stability of functional equations. Next year 1941, D. H. Hyers [16] gave first
confirmatory answer to the Ulam question for Banach spaces. In 1978, Hyers theorem was generalized by Th.M. Rassias
[37]. Gajda [12] answered the question for the case p >1in the year 1991, which was raised by Rassias. This stability
results is known as generalized Hyers-Ulam stability of functional equations (see [1, 2, 14, 20, 22, 26, 38]). During the
years 1982-1994, Rassias [32-36] investigated the Ulam stability problem for different mappings involving a product of
different powers of norms. Recently, Rassias gave the mixed product sum of powers of norms control function [39]. We
also refer the readers to the books: P. Czerwik [7] and D.H. Hyers, G. Isac and Th.M. Rassias [17].

In 2003, V. Radu [31] introduced a new method, successively developed in [8-10], to obtaining the existence of the exact
solutions and the error estimations, based on the fixed point alternative. The stability of several functional equations
have been extensively investigated by a humber of mathematicians and there are many interesting results concerning this
problem (see [3, 4, 21, 23-25, 40, 41]).

In this paper, the authors proved the generalized Ulam - Hyers stability of an additive functional equation

f00 = Z{ x+|yI )+ 1 ( —Iy,)j a1

which is originating from arithmetic mean of n consecutive terms of an arithmetic progression in Intuitionistic fuzzy
normed spaces, and reciprocal functional equation
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n i\ h(x+1y,) +h(x-1ly,)

%@gzi{hU+mmu—M)j (1.2)

Which is originating from n-consecutive terms of an harmonic progression in Non - Archimedean Fuzzy ¢ —2—- normed
spaces using direct and fixed point methods. Applications of the above functional equations are also investigated.

2. PRELIMINARIES OF INTUITIONISTIC FUZZY NORMED AND NON-ARCHIMEDEAN FUZZY ¢ —2—
NORMED SPACES

In this section, we give some basic definitions and lemmas for the main results in this article.
Definition 2.1. Let x and v be membership and nonmembership degree of an intuitionistic fuzzy set from X x(0,+o) to

[0,1] such that s, (t)+v,(t) <1 for all xe X and all t>0. The triple (X,P,,,M)is said to be an intuitionistic fuzzy
normed space (briefly IFN-space) if X is a vector space, M is a continuous t —representable and P,  is a mapping
X x(0,+00) — L*satisfying the following conditions: for all x,y e X andt,s >0,
(IFND) P, (x,0) = 0..; (IFN2) P, (x,t) = 1. ifand only if x=0;

t
(IFN3) P, (axt) = PW(x,m] forall @ #0; (IFN4) B, (x+y,t+s) 2. M(P,,(x1),P, (y.5)).

In this case, P, , is called an intuitionistic fuzzy norm. Here P, (x,t) = (s, (t),v, (t)).
Example 2.2. Let (X,||.|) be a normed space. Let T(a,b)=(a,b min (a, +b,,2)) for all a=(a,a,),b=(h,b,)eL*and
u,v be membership and non-membership degree of an intuitionistic fuzzy set defined by

axxo=uumwa»=[ t ””'}weRa

e+ x| e+ x|
Then (X,P,,,T) is an IFN-space.
Definition 2.3. A sequence {x,} in an IFN-space (X,P,

!

T) is called a Cauchy sequence if, for any ¢ >0and t > 0, there
exists n, e N such that P, (x, —x,,t)>. (N,(£),&), ¥vn,m>n,, where N, is the standard negator.
Definition 2.4. The sequence {x,} is said to be convergent to a point x e X
(denoted by x, —2—X) if P, (X, —X,t) —>1. asn—> oo for every t > 0.
Definition 2.5. An IFN-space (X,P,, ,T)is said to be complete if every Cauchy sequence in X is convergent to a point

xe X.
For further details about IFN space one can see ([5, 6, 1, 17-19, 30, 43, 44- 46, 48-50]).
Based on [15], some basic definitions and notations in ¢ —2 — normed spaces is provided.
Definition 2.7 A t —norm ¢ is a two place function ¢:[0,1] =x[0,1]—[0,1] which is associative, commutative, non
decreasing in each place and such that a®1= a, for all a<[0,1].
Definition 2.8 Let ¢ be a function defined on the real field P into itself with the following properties :
« p(—t) = o(t), forevery tell ;
- p(1)=1,;
« @ is strict increasing and continuous on (0,) ;
s lim () =0 and |im ¢(a) = .

a—0 a—»o

Example 2.9 The functions
» (@) =| | forevery a €] ;

s p(a®)=|a|” forevery pell ..
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Definition 2.10 [7] Let L be a linear space over the field R of a dimension greater than one and let N be a mapping
defined on LxLx[0,00) with values into [0,1] satisfying the following conditions: for all x,y,ze L and s,t €[0,o0)
(NAF1) N(x,y,00=0; (NAF2) N(x,y,t)=1,forall t >0 ifandonly if X,y are linear dependent;

(NAF3) N(x,y,t) =N(y,xt) forall x,yeL,andt>0; (NAF4) N(x+y,z,max(t,s))>min(N(x,z,t)ON(y,z,59));

(NAF5) N(x,Y,-):[0,00) —[0,1] is left continuous. (NAF6) N(ax,y,t)=N [x, y,L},a eR.

o(a)
The triple (L, N,9) will be called a non-Archimedean fuzzy ¢-2- normed space.
Example 2.11 Let (L,||-,-||) be a non-Archimedean fuzzy ¢ —2- normed space. Then
t
N(x,t)= 1 t+]x]’
0, t<0, xe X
Then (L, N,¢) is a non-Archimedean fuzzy ¢—2- normed space.
Definition 2.12 Let (L,N,0) be a non-Archimedean fuzzy ¢—2-normed space. Let x  be a sequence in L. Then {x }
is said to be convergent if there exists x e X such that
limN(x, —x,a,t) =1

N—0

forall acL and t>0. In that case, x is called the limit of the sequence x, and we denote it by

t>0, xe X,

N —limX, = X.

nN—0

Definition 2.13 A sequence x, in L is called Cauchy if N(x , —x ,at)=1forall acL, p>0 and t>0.

Definition 2.14 Every convergent sequence in a non-Archimedean fuzzy ¢ —2-normed space is a Cauchy sequence. If
every Cauchy sequence is convergent, then the non-Archimedean fuzzy ¢-2- normed space is called a non-
Archimedean fuzzy ¢ —2- Banach space.

For further details about non-Archimedean fuzzy ¢ —2 - normed space one can see ([11, 15, 16, 27, 29, 42])

Definition 2.15 Let X be a set. A function d: X xX —[0,o0] is called a generalized metric on X if d satisfies the
following:

(1) d(x,y)=0 ifandonly if x=y; (2) d(x,y)=d(y,x) forall X,y e X;

(3) d(x,y)<d(x,z)+d(z y)forall X,y,ze X .

For explicit later use, we recall a fundamental result in fixed point theory.
Theorem 2.16 [28](The alternative of fixed point) Suppose that for a complete generalized metric space (X,d) and a

strictly contractive mapping T : X — X with Lipschitz constant L. Then, for each given element x € X, either
(B) d(T"x,T"x)=o00 V n>0,

or
(B2) there exists a natural number n, such that:

(i) d(T"x,T"x) <o forall n>n, ;
(i) The sequence (T"x) is convergent to a fixed point y* of T;

(iii) y* is the unique fixed point of T intheset Y ={y e X : d(T™x,y) < oo};

(iv) d(y*,y)gﬁ d(y,Ty) forall yeY.

Throughout this paper we define a mapping Df : X —Y by
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2n

D (x+ly )+ f(x=ly
Df(x!yl!yz,...yyn):f(X)—Z( (et + F( |)J
I=1
forall x,y;,Y,,...,y, € X and a mapping DH : X —Y such that

[ 2x h(x+1y,)h(x—1y,)
oGy =h[ 2 Zl[h(xﬂy.)m(x—ly.)j

forall x,y,,Y,,---y,eX.

3. INTUITIONISTIC FUZZY NORMED SPACE STABILITY: DIRECT METHOD

In this section, the authors present the generalized Ulam - Hyers stability of the functional equation (1.1) in IFN - space

using direct method.

Throughout this section, let us consider X, (zZ,P,,,M) and (Y,P,

space and Complete Intuitionistic fuzzy normed space respectively.

A ,uv’

Theorem 3.1. Let §e{-1,1} be fixed and let £: X" — Z be a mapping such that for some b with 0< (gj <1

P, (£(2°%2°%,0,-+-,0),r) 2. P, (6°£(%,%,0,--,0),r),
forall xe X andall r>0, b>0and

limPy, (£(2% % 2% g 27y, ), 2%r) =1,

forall x,y,,Y,,...,Y, € X andall r>0. Suppose that a function f:X —Y satisfies the inequality

Py (DF (X Y1, Yarons Yo )i F) 2 Pr (E(X Y1 Yoo Vi )
(3.3)
forall x,y,Y,,....y, € X andall r>0. Then the limit

z)k
W(A()— (2% r)—> 1. as k—>o,r>0

exists for all xe X and the mapping A: X —Y is a unique additive mapping satisfying (1.1) and

P, (f()—A®X),r)=. P, (&(x,x0,-,0),rm|2-b])
forall xe X andall r>0.
Proof. First assume & = 1. Replacing (X, Y1, Yz, ¥n) by (%,%,0,...,0) in (3.3), we arrive

P, (2nf (x)—nf (2x),r) 2. P, (£(X,%,0,--,0),r)
forall xe X andall r>0. Using (IFN3) in the above equation, we get

(f() 19 2rnj> P, (£(xx0,,0),r)

forall xe X andall r>0. Replacing X by 2*X in (3.6), we obtain

Pw(f(2"x)—@ 2rnj> P, (£(2°%,2%,0,-+-,0) 1)

forall xe X andall r >0. Using (3.1), (IFN3) in (3.7), we arrive

Pﬂ,v[f(zk X)_@’Z_rnj >. Py’,v(g(x, XOO)bij

forall xe X andall r>0. Itis easy to verify from (3.8), that
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2k 2(k+l) ! 2k+1 n bk
holds for all xe X and all r >0. Replacing r by b"r in (3.9), we get

P,,,V{ f(2°x) _ f"%) r jzf P, (f(X,X,O,“‘:O)’Lj (3.9)

f2*x) f(@2“'x) b*r ,
Pﬂv[ e g Lt P!, (£(x.%0,-:+,0),r) (3.10)
forall xe X andall r>0. Itis easy to see that
f(2'x) L f@'x) f@"x)
f(x)- x - ;; T (3.11)
for all xe X . From equations (3.10) and (3.11), we have
f(2x) < b'r H f(2'x) f@*"x) b'r
P f(x)- , . >. M 4P - — - =
MV ( (X) 2k ; 2| .2n L i=0 v 2! 2(I+1) 2| .2n (312)

> MR (E(x%,0,+,0), 1)) 2 Py (£(%,%,0,++,0),7)
forall xe X andall r >0. Replacing X by 2"x in (3.12) and using (3.1), (IFN3), we obtain

f2"x) f@“"x) & b'r , r
P#,V( om - 2(k+m) ’;2(i+m) 2N ZL* Pﬂ:" §(X’ X’O"”’O)’b_m (313)

forall xe X andall r>0 and all m,k >0. Replacing r by b™r in (3.13), we get

f"x) fE"x) "t bir ,
( g Zﬂ: 5 on 2. Pl (£(x%,0,-,0),1) (3.14)

forall xe X andall r>0 andall m,k >0. It follows from (3.14) that

P

wy

f2"x) f(2“"x) , r
Pﬂ,v( o e |2 P | (0 %.0,0)

; 2'-2n

(3.15)

K i k
for all xe X and all r>0 and all m,k>0. Since 0<b<2 and Z[gj <o, this implies {f(sk X)} is a Cauchy
i=0

sequence in (Y,P; ,M) . Since (Y,P; M) is acomplete IFN space, this sequence converges to some point A(x) Y . So

uv!

one can define the mapping A: X —Y by

k
P#YV(A(X)—f(;X),rJa 1. as k—w,r>0 (3.16)

forall xe X. Letting m=0 in (3.15), we get

2k k-1 bl

Pﬂvv[f(x)—f(zkx),r]% P! | &(x%,0,--,0), —"— (3.17)
='2'-2n

forall xe X andall r>0. Letting k — o in (3.17), we arrive
P, (f)-AMX),r)=. P, (£(xx,0,,0),r(2-b))
for all xe X and all r>0. To prove A satisfies the additive functional equation (1.1), replacing (X,y,,Y,,---,Y,) by
(zkx,zk AL yn) and dividing by 2* in (3.2), we obtain
1 '
P, (Z—kDf (2x,24y;,, 2" yn),r) >. Pl (gf(zkx,zk yyeee, 26 yn),Z"r) (3.18)

forall x,y,Y¥,,...y,€X and all r>0 Now,
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=1

Z*M{P [A(x)—f(ZkX),%J,P {_H[A(x+lyl)+A(x—ly,)J i {f(zk(x+ly,))+f(zk(x—lyl))}i} (3.19)

e

2n 2k &~ 2n

3
. {M_ 1 Zn:[ f (2k (x+|yI ))+ f (2k (x—lyI ))}

2k oK &~ 2n

forall x,y,¥,,...Y, € X andall r>0. Using (3.16), (3.18), (3.2) and (IFN2) in (3.19), we arrive

A(X) = Z[ ACcHl, );A(X"yl )J

1=1

forall x,y,,Y,,..,y, € X . Hence A satisfies the additive functional equation (1.1). In order to prove A(x) is unique, let
A'(x) be another additive functional mapping satisfying (3.4) and (3.5). Hence,

AR'x)  f(2x) Lj 5 [A'(ka) A2 X) Lj}

P,u,v (A(X) - A'(X)! r) ZL* M {P,u,v [ 2k 2k 2 2k - 23k 2

= [é(zkx 2x,0,++,0), r2n2-b n;Z—b)]> R;y(g(x,x,o,...,o),_rzk gi,i_b)j

k —_—
for all xe X and all r>0. Since "m—rz n2-b)

_ L, r2n(2-b) ) _
lim b = o, Wwe obtain lmpﬂ_v(f(x,xlol...,o),—]_1L*_ Thus

2b"
P.. (A(X)—A'(x),r)=1. forall xe X andall r>0, hence A(x)=A'(x). Therefore A(x) is unique.

For & = -1, we can prove the result by a similar method. This completes the proof of the theorem.
From Theorem 3.1, we obtain the following corollary concerning the stability for the functional equation (1.1).
Corollary 3.2 Suppose that a function f : X —Y satisfies the inequality

P! (4.r),

uyv

v X|| + y s#1
P, (Df (X, Yi¥,) 1) 2 £ ( {” I Z" '"} j (3.20)
’ S n S n+l1l)s U n+l1l)s l
pr LI T +{||x||< 2 Sy } ) O
=1 =1 n+1

for all all x,y,,Y,,....y,€X and all r>0, where 4,s are constants with 2>0. Then there exists a unique additive

mapping A: X —Y such that
P, (4.nr),

J78%

P, (f()=AM),r)=. 1P (241X, m|2-2°

), (3.21)

)

ﬂ ) (2/1 ” X ||(n+1)s rn|2 2(n+1)s

forall xe X andall r>0.

4. INTUITIONISTIC FUZZY NORMED STABILITY: FIXED POINT METHOD

In this section, using the fixed point alternative approach, we prove the generalized Ulam - Hyers stability of the
functional equation (1.1) in intuitionistic fuzzy normed spaces. Throughout this section, let us consider X , (Z,P, ,,M)

uv

and (Y,P,,,M) are linear space, Intuitionistic fuzzy normed space and Complete Intuitionistic fuzzy normed space.
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For to prove the stability result we define the following: a, is a constant such that
2 if i=0,
R L
2
and Q is the set such that
={g]g:X —>Y,g(0)=0}.
Theorem 4.1. Let f: X —Y be a mapping for which there exist a function &: X"* — z with the condition

l!mPy’,v(ﬁ(aikx,aikyl,---,aikyn),aikr):1L,, VX Y, Y, € X, r>0

and satisfying the functional inequality oD
PW(Df (X, Ya, Yoo Yo )o ¥ )> Pﬂ'v(§(x,y1,y2,-~,yn),r), Y X, ¥ Yoo Y, € X, > 0. (4.2)
If there exists L = L(i) such that the function x — y(x) = 5(; ; 0,---,0), has the property
F’/j,v(L@,rszp’y(;/(x),r), VxeX,r>0. 4.3)
Then there exists unique additive function A: X —Y satisfying the functional equation (1.1) and
P, (F)—AM).T)>. P!, ([ELJ 2, nrJ, VxeX,r>0. (4.4)

Proof. Let d be a general metric on Q, such that
d(g,h) =inf {K € (0,%)|P,, (3(x)~h(x),r)>. P, (Ky(x),r),xe X, r>0}.
It is easy to see that (€, d) is complete. Define T:Q — Q by Tg(x) = aig(aix), forall xe X . Now forall g,heQ,

J78%

d(g.h)<K =P, (g(x)-h(x),r)=. P, (Ky(x),r), xeX,

:>PM[; g(a\ix)—a%h(aix),rj>L P’ (Kr(ax).ar), xe X,

= Pﬂv[; g(aix)—éh(aix),rj >. P, [;;/(aix),rj, XeX,

P, (Tg)-Th(x),r)=. P, (KLy(X),r), xe X,
:>d(Tg,Th)§ LK.

This givesd(Tg,Th)<Ld(g,h), for all g,heQ, i.e., T is a strictly contractive mapping of Q with Lipschitz constant
:aii' Replacing (X, ¥, Y,,-*+, ¥,) by (X x,0,---,0) in (4.2), we get
P,.(2nf (x)—nf (2x),r) 2. P (&(%,%,0,-+:,0),r), ¥V xe&X,r>0. (4.5)
Using (IFN3) in (4.5), we arrive
(f( )— f(zx) j> P, (£(%,0,:--,0),20r), ¥ X X,r>0, (4.6)
With the help of (4.3), when i = 0, it follows from (4.6), that
W(f(x) 1 ) P, (7(x).2nr), v xeX,r>0.

=d(f,Tf)<L=L= L1'<oo 47
(4.7)
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Replacing x by g in (4.5), we obtain

PW(Zf (gj— f (x),rj = lev(gg,g,o,---,oj,nrj, ¥ xeX,r>0. (4.8)
With the help of (4.3), when i =1, it follows from (4.8), that
P, (Zf (g)— (), rj >, P (y(0.0r), ¥ xeX,r>0,

=d(Tf, f)<1=L"=L" (4.9)
Then from (4.7) and (4.9), we can conclude
d(f,Tf)<L™ <o
Now from the fixed point alternative in both cases, it follows that there exists a fixed point A of T in Q such that

f (ax)

k

k>, V¥ xeX. (4.10)

A(X) —2—
Replacing (x, .-+, y,) by (a'x.ay,,--.a‘y,) in (4.2), we arrive
Wy

P (a%Df(ai"x,ai"yl,-u,ai"yn),rjZL* P}jvv(§(ai"x,aikyl,--~,ai"yn),ai"r), V X, X €X,r>0. (4.11)

In order to prove A satisfies (1.1), the proof is similar to that of Theorem 3.1. Using fixed point alternative, A is the
uniquie fixed point in T the set
B={heQ|d(f A)<wx|,

such that
P, (f()-AMX),r)>. P, (Ky(x),r), Vv xeX,r>0. (4.13)
Again using the fixed point alternative, we obtain
1 L
d(f,A)<—d(f,Tf d(f,A)< :
(f.A)S=—d(.TF)= d(f,A)s =
Hence, we have
1-i
P.(fO)-AX),r)=. P, [(ll'_ L]y(x),nr} vV xeX,r>0. (4.14)

This completes the proof of the theorem.
From Theorem 4.1, we obtain the following corollary concerning the stability for the functional equation (1.1).

Corollary 4.2 Suppose that a function f : X —Y satisfies the inequality
P, (4.r),

P I A3 X[ + y y S},rJ, s=1
P, (Df (X, ¥y, ¥, ) 1) 20 4 ( {" ” .Z:l:" L (4.15)

1

o (A s i S e s

for all all x,y;,y,,....y, €X and all r>0, where A,s are constants with 4>0. Then there exists a unique quadratic

mapping A: X —Y such that
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P, (AIn]r)
P (f)-AX),r) >. 4P, [

IxI } (4.16)

, 22 n+
i

n|2 2

forall xe X andall r>0.
Proof.

Setting EX Y Yoo Vo) = ﬂ(ll XIF+200; ||sj
i=1

n n
ﬂ(ll XIF LTIy I+ 106 12+ 001y, II‘”“’S]
i=1 i=1

forall x,y;,Y,,.... ¥, € X . Then

(P
Pyv girJ
i [if(a-kxa-ky 8y, aly,) rJ: g ﬁ[“axn +Z||a y |lj J
ﬂ,vaik i M YA Yottt Y s /Jx"alk ,
Pl ﬁ(lla X Hlla y, [+l afx s +lea Y, Ms] J

P;:,v (a;“/l, r) —>le as k — oo,

n
- P;,V[ai“'“%[ux||s Dy, ||S],rJ 151 as koo,
i=1
P, [aﬁ"””'”k [nxus LT P+ lx I <3y, ”(M)SJ”J 51, as koo,
i=1 i=1

i.e., (3.1) is holds. But we have y(x) = 5[%%00) has the property y(x) < L~al;/(aix) forall xe X . Hence

P, (4.nr)
P (700ur) =Pl (£(3:5.0:-0)r) = B, (427 [ o)

P (420 I} o)
Now,

P v
, (1
Pﬂ,v[—V(aiX),rj =
g

for all xe X . Hence the inequality (3.3) holds either, L=2"° for s>1 if i=0 and L=2"" for s<1 if i=1.From
(5.4),

( a'a, nr)
(/1a1 20 |x|° nr)

P,;,v (ﬂal}—(n+1)s 1-(n+1)s ”X”(n+1)s , nr)
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Case:l L=2"*fors>1ifi=0,.

(2 24 s
P,u,v ( f (X) - A(X)l r) ZL* PLI,V ((mj 7(X)' nrj = P,u,v [25—_2|||X" 1 ri.

n

Case:2 L=2"for s<1ifi=1

P, (f(X)—A(X),r) >. P, ((#jy(x), nrj =P, [2—/1

X[ ,r .

Similarly, the inequality (4.3) holds either, L=2"if i=0 and L=2 if i =1 for condition (i) and the inequality (4.3)

holds either, L =2"""*for s > ifi=0and L=2""" for s<—_ if i =1 for condition (iii). Hence the proof is

n+1 n+1
complete.

5. NON-ARCHIMEDEAN FUZZY ¢-2- NORMED STABILITY: DIRECT METHOD

In this section, the generalized Ulam - Hyers stability of the additive functional equation (1.2) in non-Archimedean fuzzy
@ —2-normed space is provided. Here after, throughout this section, assume that R be a non-Archimedean field, X be

vector space over R, (Y,N’,0) be a non-Archimedean fuzzy ¢—2- Banach space over R and (Z,N’,0) be an non-

Archimedean fuzzy ¢—2- normed space.

Theorem 5.1 Let y e{-1,1} be fixed and let «: X" — Z be a mapping such that for some z with 0<

N'(a((%)y x,0, 0,...,Oj,a, rj >N'(z7a(x,0,0,..,0),a,r)

forall x,ae X andall r>0, and

i ol (95)" 5 0 904 v (08) s ||
(5]
forall x,y,,y,,...Y,,ae X andall r>0. Suppose that a function f:X —Y satisfies the inequality

N(DF (X, Yy, Yoo Yo F) 2 N (a(X, Y1, Yoo, Y )s &)

forall x,y,,Y,,...Y,,ae X andall r>0. Then the limit

RO = N-lim(%3) " f ((%)k Xj

exists for all xe X and the mapping R: X —Y is a unique reciprocal mapping satisfying (1.2) and

N(f(x)-R(x),a,r)> N’(a((%)x,o,...,o),a,r‘go(%)—(p(zc)‘)

forall x,ae X andall r>0.
Proof. Firstassume y =1. (X, ¥;, Y5, ¥, ) by (x,0,0,---,0) in (5.3), we get

N (f ((%)x)—(%) f (x),a,r) > N'(a(x,0,0,...,O),a,r)
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(5.2)

(5.3)

(5.4)

(5.5)

(5.6)



forall x,ae X andall r>0. Replacing X by (%)x in (5.6), we get

N (f (9-(")1 ((%)x),a,r)z N’(a((%)x,0,0,...,O),a, r) (5.7)

forall x,ae X andall r>0. Replacing x by (%)k x in (5.7), we obtain

N1 ((24) x)-(02) 1((04) < |2 (2) w0000 59

forall x,ae X andall r > 0. Using (5.1), (NAF6) in (5.8), we arrive

N[(%)k f ((%)k XJ_(%)M ¢ ((%>k+l x%m} N'[a(x,0,0,...,O),a, (0(;%)] (5.9)

forall x,ae X andall r >0. Replacing r by (p(rk*l)r in (5.9), we get

N {(%)k (AR j%} N(a(1,00...0).a1) 510
forall x,ae X andall r>0 ] Itis easy to verify that_ | | |
ERARARE VAR VAR VARIGANY) 11
for all xe X . From equations (5.10) and (5.11), we have
N| f(x)- “2 ‘ f ”2 kx ,a,in>minU{N{ ”2 i f n2 ix - “2 i+1f n2 i+lx awﬂ
04 (1 el )

> ming{N’(a(x,0,0,...,O),a, r)} >N'((x,0,0,..,0),a,r) (5.12)

forall x,ae X andall r>0. Replacing x by (%)m x in (5.12) and using (5.1), (NAF6) , we obtain

\ {(%)m f((%)m Xj—(%)m f((%)k*m Xj’a’2%J> N'[a(x,0,0,...,O),a,wj (5.13)

forall x,ae X andall r>0 andall m,k >0. Replacing r by ¢(z™)r in (5.13), we get

NI (5 "t " "y |- " " " “x ,a,mikjlw}>N'(a(x,0,0,...,O),a,r) (5.14)
[(/) (087 = 08 (A" &

forall x,ae X andall r>0 andall m,k >0. It follows from (5.14) that

N () £ ((4) 5 =(02) " £ (74) " x ) ar |2 N @(.0,0,...0),a, S LI
(087 (004041 (04 ")) {< g %ﬂ}

(5.15)
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r((05) +)

Y
forall x,ae X andall r>0 andall mk>0. Since 0<7< y and E(MJ <o, implies that { ——————=‘isa
( n) s ¢(%) (%)k

Cauchy sequence in (Y,N’). Since (Y,N’) is a non-Archimedean fuzzy ¢-2- Banach space, this sequence converges to
some point R(x)eY . So one can define the mapping R: X —Y by

R(x)=N—[im
(%)

forall xe X. Letting m =0 in (5.15), we get

K+

N(f (x)—(%)k f ((%)k x),a,rjz N’{og(x,o,o,...,o),a,IZ;BD(T)]+1 r} (5.16)

[o(2)]

forall x,ae X andall r>0. Letting k - o in (5.16) and using (NAF5), we arrive

N(f (x)-R(x).ar)> N'(a(x,0,0,...,O),a, r((p(%)—qo(r)))

for all xaeX and all r>0 . To prove R satisfies (1.2), replacing (X Y,.Y,.--Y,) by

((%)k X,(%)k yp(%)k yz,--‘,(%)k yn) in (5.3), respectively , we obtain
v (54) o (03] 08 94 (0 w2 (08 w0 04 (0 . G

forall r>0 andall x,y,,Y,,... Y,,ae X . Now,

N [R50 5 et Lo o #2000 (9924 )25 )
N r[ [ ROGEWORGI) V), (n/) 5| < f((%)(“'yu))f((”2)(x—|y,)) T
{ s -0s [z{ ((%)<x+|y,>)+f(%)<xw))ﬂ’ ’3}

N[(%)f((%)(%)x)(%)f[i{f((%)<x+w.>)+f((%)<x'VI )Dgﬂ

k

(5.17)

(5.18)
forall x,y,,Y,,...Y,,ae X andall r>0. Using (5.17) and (NAF5) in (5.18), we arrive
N(DR(X, Yoo Yo ¥, )2, F) > min{l,l,l, N’[a((%)k AARTAL ylj,a,co((%)kjrj}
(0] %04 v 05) o (24) )
(5.19)

forall x,y,,Y,,....y,,ae X andall r>0. Letting k -« in (5.19) and using (5.2), we see that

N(DR(X,yl,yz,---,yn),a,r)=1
forall x,y,,y,,...Y,,ae X andall r>0.Using (NAF2) in the above inequality, we get
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R(%j_ \ R(X+Iyl)R(X_|y|)
n _|:1 R(x+1ly,)+R(x—ly,)

forall x,y,,Y,,..,Y,,ae X . Hence R satisfies the reciprocal functional equation (1.2). In order to prove R(x) is unique,

let R'(x) be another reciprocal functional equation satisfying (5.4) and (5.5). Hence,

N(R(x)-R'(x),ar)

rof (2/) 2/ \=o(r
forall x,ae X andall r>0.Since [|im (/)((%) j(q)(A) ol ))

= o0, We obtain
k—o 2¢)(Tk

)
limN’ a(x,o,o,...,o),a,r(p((%)kj((ﬂ(%)—(ﬂ(r))

()

=1

Thus N(R(x)-R'(x),a,r)=1forall x,ae X andall r>0, hence R(x)=R'(x). Therefore R(x) is unique. For = -1,

we can prove the result by a similar method. This completes the proof of the theorem.
The following Corollary is an immediate consequence of Theorem 5.1 concerning the stabilities of (1.2).

Corollary 5.2 Suppose that a function f : X —Y satisfies the inequality
N'(¢,a,r),

N(DF(x,yl,yz,...,yn),a,r)z N’[g I x| +Z|| Y; ||Sj,a,r], s = -1 (5.20)
i=1

-1

n n
N’ S(HXHS LTy P16 12+ 0y, II(””’SJ,a,r .S E —
i1 i1 n+1

for all x,y,,Y,,...Y,,ae X and all r>0, where &,s are constants with £ >0. Then there exists a unique reciprocal

mapping R: X"* —Y such that
v(2arl)-o(0)),
N(f()—R(x),r)> N’(25*1g||x||s,a,r‘ga(25*l)—¢(ns*l)

N !(2(ﬂ+l)5+1€ ” X ||(n+l)s’ r ‘¢(2(n+l)s+1) _(p(n(n+1)s+l)

), (5.21)

)

forall x,ae X andall r>0.

6. NON-ARCHIMEDEAN FUZZY ¢-2- NORMED STABILITY: FIXED POINT METHOD

In this section, using the fixed point alternative approach, we prove the generalized Ulam-Hyers stability of the functional
equation (1.2) in fuzzy ¢—2-normed spaces. Throughout this section, assume that R be a non-Archimedean field, X

be vector space over R, (Y,N’,0) be a non-Archimedean fuzzy ¢ —2— Banach space over R and (Z,N’,0) be a non-

Archimedean fuzzy ¢ —2- normed space.
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Theorem 6.1 Let f:X —Y be a mapping for which there exist a function with the condition «: X"* — Z with the
condition

lim N'[a(vikx,vikyl,'-',Vikyn),a,m]:l (6.1)

k—

Where v, _2 if i=0and v, =gif i =1 such that the functional inequality
n

N (DF (%, Yy, Yoo s Yo ) & 1) 2N (@ (X, Yy Voo Vi ) 20T (6.2)
forall x,y,,Y,,--,y,,ae X andall r>0. If there exists L such that the function

X B(X)= a(%,o,o,---,oj,
has the property
N'(B(x).a,r)=N'(L-v, B(v,x),a,r). (6.3)

for all x,ae X and all r>0. Then there exists a unique reciprocal mapping R:X —Y satisfying the functional
equation (1.2) and

N(R(¥)—f(x),a,r) =N '[[ii_jﬁ(x),a,r} (6.4)

forall x,ae X andall r>0.

Proof. Consider the set Q = {g/g X =>Y,0 (O) = 0} and introduce the generalized metric on Q,

d(g,h):inf{K e(O,oo)/N(g(X)—h(X),a,r)Z N '(Kﬂ(x),a,r),x eX,r >O} .
It is easy to see that (Q,d) is complete. Define T:Q—Q by Tg(x)=v,g(v,x), for all xe X . One can show that

d(Tg,Th)<Ld(g,h), forall p,qeQ . i.e., T isastrictly contractive mapping on Q with Lipschitz constant L=v, .
Replacing (X,y,,Y,,-*¥,) by (x,0,0,---,0) in (6.2), we get,

N(f((%)x)—(%)f(x),a,r)zN'(a(x,0,0,---,O),a,r)
i.e., N (%)f((%)x)—f(x),a,@ >N'(a(x,0,0,:++,0),a,r) (6.5)

forall x,y,,Y,,....Y,,ae X andall r>0.Using (6.3) for the case i =0 it reduces to

N (%)f((%)x)—f(x),a,L >N'(B(x),ar) forall x,aeX,r>0.

o(%)

e, d(Tf, f)<L=d(f,Tf)<L="L"<oo.

Again replacing x by (%)x in (6.5), we get

N(f(x)—(%) f ((%)x),a,r)zN '[a(”—;,o,o,---,o),a,r) forall x,ae X, r>0.

(6.6)
Using (6.3) for the case i =1 it reduces to
N(f(x)—(%) f ((%)x),a,r)zN '(ﬂ(x),a,r) forall x,ae X, r>0.
ie, d(f,Tf)<l=d(f Tf)<1=L" <.
In both cases, we have
d(f,Tf)<L. (6.7)
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Therefore (A i) holds. By (A ii), it follows that there exists a fixed point R of T in Q such that
N k k
R(x)=N-limy, f(vx) (6.8)
To prove that R satisfies (1.2), replacing (x,y,,Y,,---Y,) by (v*x,v,“y,,---,v*y,) in (6.2), we obtain

forall x,y,,Y,,...Y,,ae X andall r>0. Letting k — oo in the above inequality and using the definition of R(x), we see

N(vik Df (vi"x,vikyl,vikyz,---,vi"yn),a,r)z N a(vikx,vi"yl,vikyz,---,vikyn),a,

that R satisfies (1.2) forall x,y,,y,,---,y, € X . Therefore the mapping R is reciprocal.
By (A iii), since R is the unique fixed point of T in the set A ={f eQ:d(f,R)<oo}, R is the unique function
such that
N(f(x)-R(x),a,r)=N'(Kg(x),ar)

1-i
for all x,ae X and all r>0,K>0. Again by (A iv), we obtain d(f,R)gﬁd(f,Tf) this implies d(f,R)le -

Ll—i
1-L

which yields N (f (x)—R(x),a,r) >N [( J/}(x),a, rj for all x,ae X andallr >0. This completes the proof of the

theorem.
From Theorem 6.1, we obtain the following corollary concerning the stability of (1.2).
Corollary 6.2 Suppose that a function f : X —Y satisfies the inequality

N'(Z,ar),
N(Df (Xl y11y2!"'1yn)’a’r)2 N'(/’i’ ”X”S +Z|l yi ”SJ!a!rJI S # _11 (69)
i=1
’ s . s n+l)s 5 n+l)s -1 .
N (i(llxll LTy 1 1D+ 0y, 1 J,a,r} s # ——,
i-1 i1 n+1

for all x,y,,Y,,...Y,,ae X and all r>0, where A,s are constants with A >0. Then there exists a unique reciprocal

mapping R: X"* —Y such that
N'(z/l,a,r|¢(2)—¢(n)|),
N (f(x)=R(x),r)> N’(ZS”/Iﬂ(x),a,r‘go(Zs“)—(p(ns*l)

Nl(2(n+l)5+l/1ﬂ(x), r‘¢(2(n+1)s+l)_¢(n(n+l)s+l)

), (6.10)

)

forall x,ae X andall r>0.

/11

n
Proof: Setting a(x,Yy. Y. ¥y ) = A{nxus Dy, ||5},
i=1

n n
z[n XIF T JIy: I+ 106 11792+ Iy, ||<“*1>SJ
i=1

i=1
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forall x,y,,Y,,...,Y, € X . Now,

N ‘(vik/l, a, r),

n
N '(Vika(vikx!vik Vi Ve yn),a,r ) =N '[vi"/l{llvikxns +Z”Vikyi ||S}:a:r}

i=1

n n
N '(vrﬂ{nvrxns LTy 1P+ 1o 1092+ vy, ||<“+1>Sj,a,rJ
i=1

i=1

—1las k — oo,
=J{—>1las k = o,

—1las k - oo,

for all x,y,,Y,,...Y,,ae X and all r>0.Thus, (4.1) is holds. But we have ﬁ(x)za(%,o,...,o,oj, has the property

B(x)=L-v p(vix) forall xe X. Hence

ﬂ’l

nx

ﬂ(x)=a(%,0,...,0,0j= /1{ .

/{O+H%
2

S
+0+...+0},

(n+1)s

+0+...+0]

N'(Av;,a,r), N'(viﬂ(x),a,r),
Now, N'(viB(vix).ar)= N'[lvf*l(gj ||x||s,a,rJ, = N'(vf”ﬂ(x),a,r),

0 (n+1)s . N '(Vi(””)“lﬁ(x),a, r)'
N’ lvi(n+1)s+l (Ej "X"(n+ )s ar|

Hence the inequality (6.3) holds either, Lz(%) if i=0 and L=(%) if i=1 Lz(%)s+l for s<-1if i=0 and

L:(%)S+l for s>-1if i=1 L:(%)(M)M for s<—niJrl ifi=0 and L:(%)(M)S+l for s>—ni+1 if i=1.

From (6.4), we arrive (6.10). Hence the proof is complete.

7. APPLICATIONS OF THE FUNCTIONAL EQUATIONS (1.1) AND (1.2)
Consider the additive functional equation (1.1), that is

£00 ZIZ:[ f(x+ly, );f (x—ly,)}

This functional equation can be used to find the n-consecutive terms of an arithmetic progression. Since f (x) = x is the
solution of the functional equation, the above equation is written as follows
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Xzé((xﬂm);(x—lm)}

Now, let us take the variables as consecutive terms, we note that the middle term of any n-consecutive terms of an
arithmetic progression is always the arithmetic mean of the other n terms.

Any n consecutive terms of an arithmetic progression differ by the common difference, d . So any n consecutive terms
of an arithmetic progression can be written as
b-nd,..,b—2d,b—d,b,b+d,b+2d,...,b+nd.
The middle term b can be represented by
b—d)+(b+d)+(b-2d)+(b+2d)+..+(b—nd)+(b+nd)

b |
2n

i.e., b is the arithmetic mean of
(b—d)+(b+d)+(b—2d)+(b+2d)+...+(b—nd)+(b+nd).

Consider the reciprocal functional equation (1.2), that is

f[g):i[ f(x+|y.)f(x—ly.>)]_

n ) ZUEx+ly)+ f(x=ly,

This functional equation can be used to find the n-consecutive terms of a harmonic progression. Since f (x) L is the
X

solution of the functional equation, the above equation is written as follows
1 1
n < X+1y, x—=ly,
2x ,Z; 1,1
X+ly,  x-=ly,

Now, let us take the variables as n-consecutive terms, we note that half of the middle term of any n consecutive terms of
a harmonic progression is always the division of product and sum of the other two terms.

Any n-consecutive terms of a harmonic progression differ by the common difference, d . So any n- consecutive terms
of a harmonic progression can be written as
1 1 1 1 1 1 1

b-nd’ 'b—2d’'b—d'b'b+d b+2d’ 'b+nd’

The half of the middle term %can be represented by

1 1
n & b+ld b-Id,
=l !

b+ld, b-Id,
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